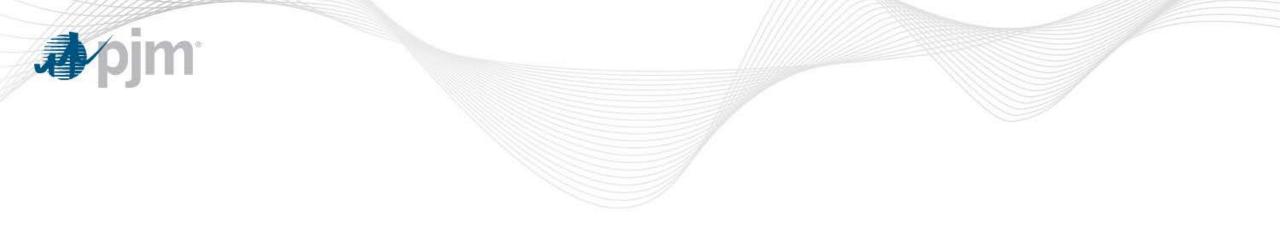
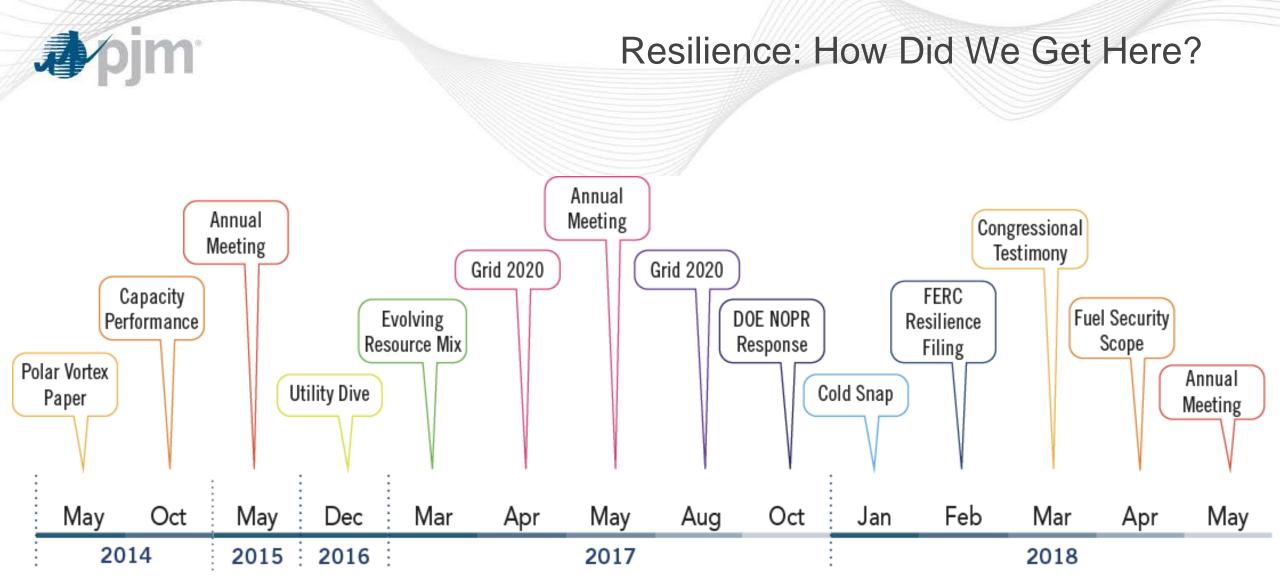


Update on Fuel Security Initiative

Special MRC June 28, 2018



Overview


im

1

- External Coordination & Stakeholder Feedback
- Analysis Approach & Assumptions
- Next Steps

Overview

1p	m							Fuel	Secu	rity Tir	neline	
Initial MRC		RC: nptions		MRC: Phase II								
High					Со	mmunicat	ions Plan					
Story	JUAIU							FERC Filing				
May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	
2018								2019			-	
Phase I Analysis Identify potential system vulnerabilities and develop criteria to address them		Deve incorpo	Phase I ling/Marke elop method prate vulner s markets i	et Design dology to rabilities to	ign Address specifi to feder s to		III Ongoing Coordination ific security concerns identified by eral and state agencies					

FOCUS☆≉≉≋≣

- Define fuel security as risks in fuel delivery to critical generators
- 2. Reaffirm the value of markets to achieving a costeffective, fuel-secure fleet of resources
- 3. Identify fuel security risks with a primary focus on resilience
- 4. Establish criteria to value fuel security in PJM markets

Phase 1: Analysis Identify potential system vulnerabilities and develop criteria to address them

Phase 2: Modeling

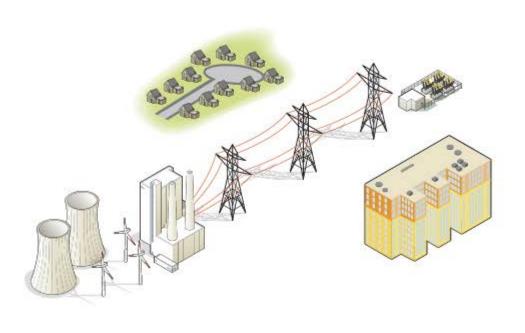
Model of incorporation of vulnerabilities into PJM's markets

Phase 3: Ongoing Coordination

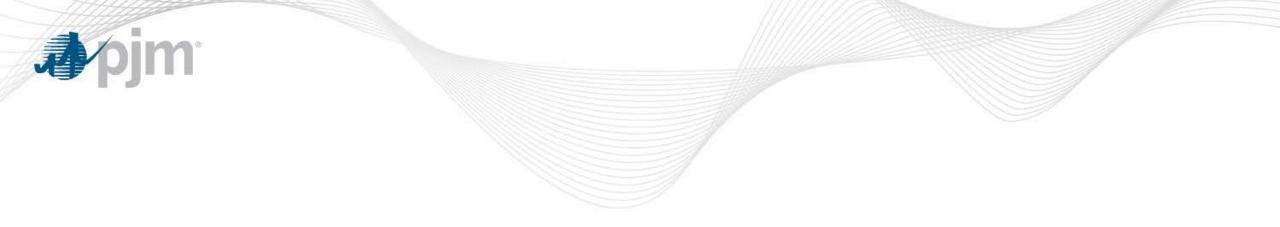
Address specific security concerns identified by federal and state agencies

Fuel Security Summary

May–July 2018: Analysis


Aug.–Oct. 2018: Modeling/Market Design

Nov. 2018–March 2019: Ongoing coordination January 2019: FERC filing



Fuel Security vs. Capacity Performance

Fuel security looks at the whole system

Capacity Performance looks at each unit individually

External Coordination & Stakeholder Feedback

Purpose: Solicit feedback on PJM Fuel Security Analysis assumptions and approaches as applicable to their industries.

- Generation Owner Survey
- Individual stakeholder sessions
 as needed/requested
- Natural Gas Council (represents the pipelines, LDCs, producers and marketers)
- National Coal Transportation
 Association

- Nuclear Energy Institute (NEI)
- Grid Strategies (intermittent resources)
- Department of Energy
- NERC/ReliabilityFirst
- ISO-NE
- NYISO

Purpose: Solicit feedback on PJM Fuel Security Study through comment period (comments were due June 8, 2018)

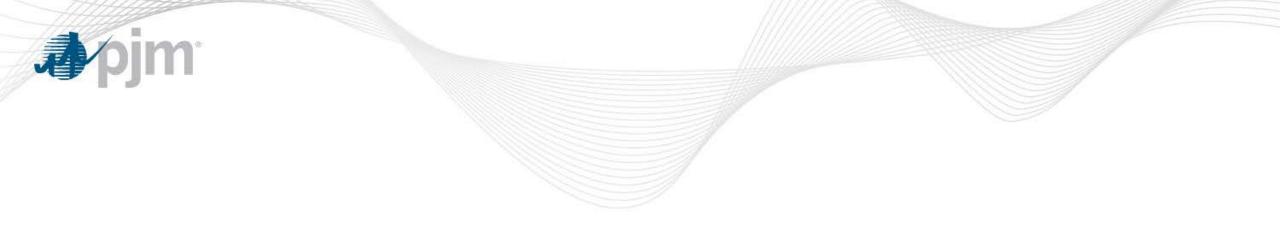
- Stakeholders provided feedback from various perspectives
- PJM reviewed comments
- Incorporating feedback into PJM fuel security study
 - Scenario information
 - Assumptions
 - General study feedback

Purpose

- Identify key objectives, assumptions and findings from each study
- Reflect key variables that can assist with PJM's fuel security analysis

Author Organization Current Studies PJM Has Reviewed

The Brattle Group	Defining Reliability for a New Grid - Maintain Reliability and Resilience Through Competitive Markets
Natural Gas Council	Natural Gas Systems: Reliable & Resilient
Quanta Technology	Ensuring Reliability and Resilience: A Case Study of the PJM Power Grid
NEI	The Impact of Fuel Supply Security on Grid Resilience in PJM
ISO New England	Operational Fuel-Security Analysis
Lincoln Laboratory (MIT)	Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security

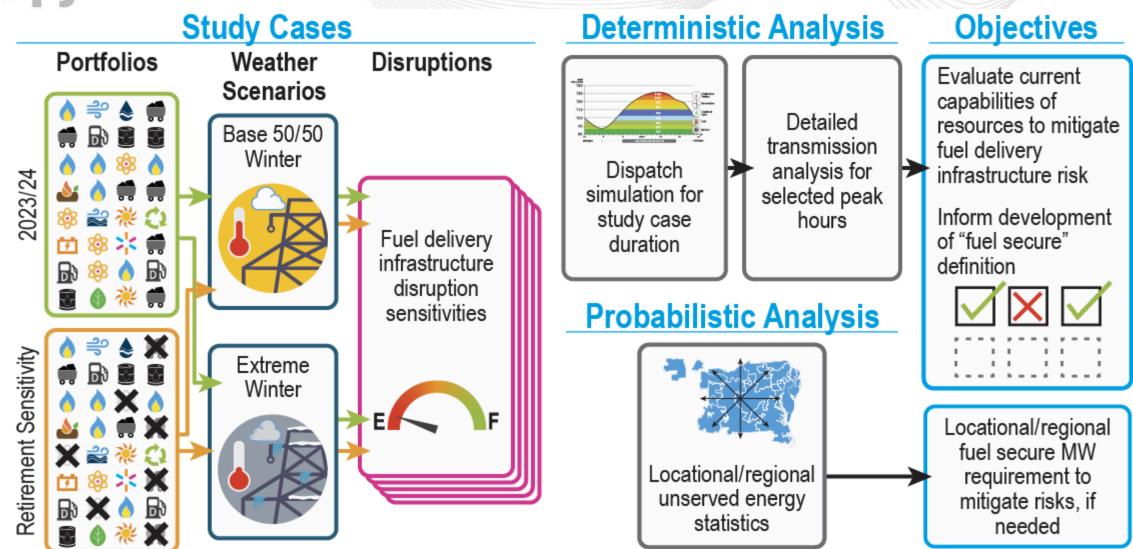


Fuel-Related Data Collection

- Fuel-specific periodic survey open to generation owners June 8–22
- Targeted based on 2017 eDART seasonal fuel survey

Key focus areas include:

- Fuel delivery issues encountered during recent Cold Snap
- Pre-winter inventory and refueling strategies
- Natural gas pipeline parameters potentially affecting unit operations
 - Operating pressures and details around switching to alternate pipeline
- Hydro storage capability


Analysis Approach & Assumptions

- 1. Identify fuel delivery infrastructure risks on a locational basis
- 2. Evaluate current capabilities of resources in PJM to mitigate risks under weather-induced and man-made fuel delivery disruptions
- 3. Determine if and when any market-based mechanism would be needed to mitigate risk to PJM operations

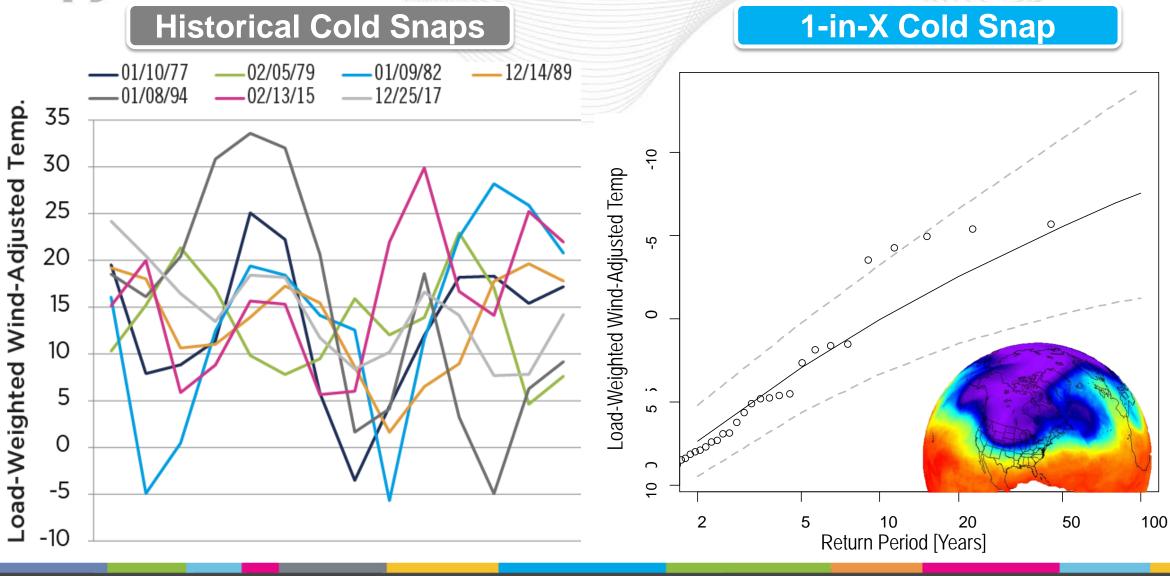
Approach Overview

.⊅∕pjm

Generation Portfolio Assumptions

	Retirements	Replacement			
Base Portfolio	Announced retirements accounted for in 2023 Winter RTEP case	Queue projects accounted for in 2023 Winter RTEP case			
Retirement Sensitivity	 <i>Coal</i>: Based on plant age and size, reference IMM/PJM units at risk methodologies <i>Nuclear</i>: Based on public analysis of future costs and revenues in IMM State of the Market Report 	 Assuming trends in generation queue and commercial probabilities Replace ICAP based on maintaining: Expected Planning Reserve Margin (Phase 1a) IRM (16.6 percent) (Phase 1b) 			

Load Scenarios


Base 50/50 Winter

- Peak Load: 134,435 MW based on forecast for Winter 2023/24
- Average winter hourly load shape

	 Estimated probability (1 in X yrs.) of extreme winter scenario using:
Extreme Winter	 Historical daily wind chill (wind adjusted temperature) for current PJM footprint Historical consecutive days of extreme wind chill
	 2017/18 winter hourly load shape

Extreme Value Analysis

www.pjm.com

PJM©2018

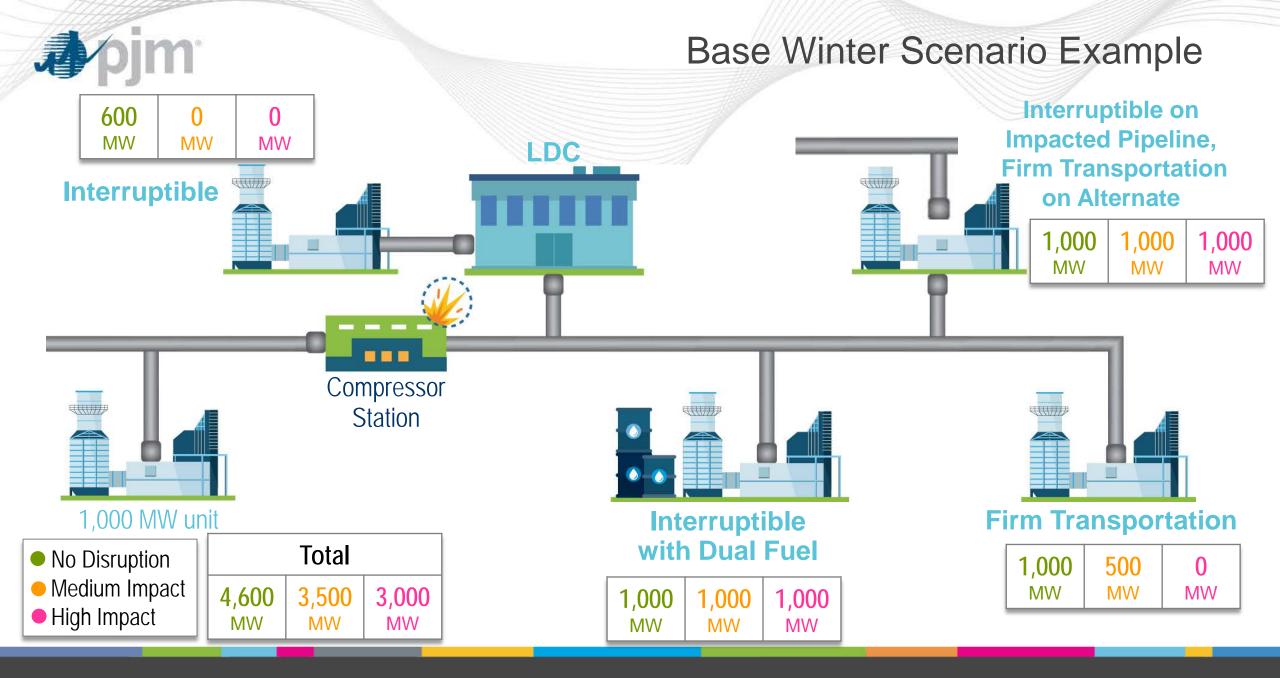
Extreme Winter Weather Evaluation

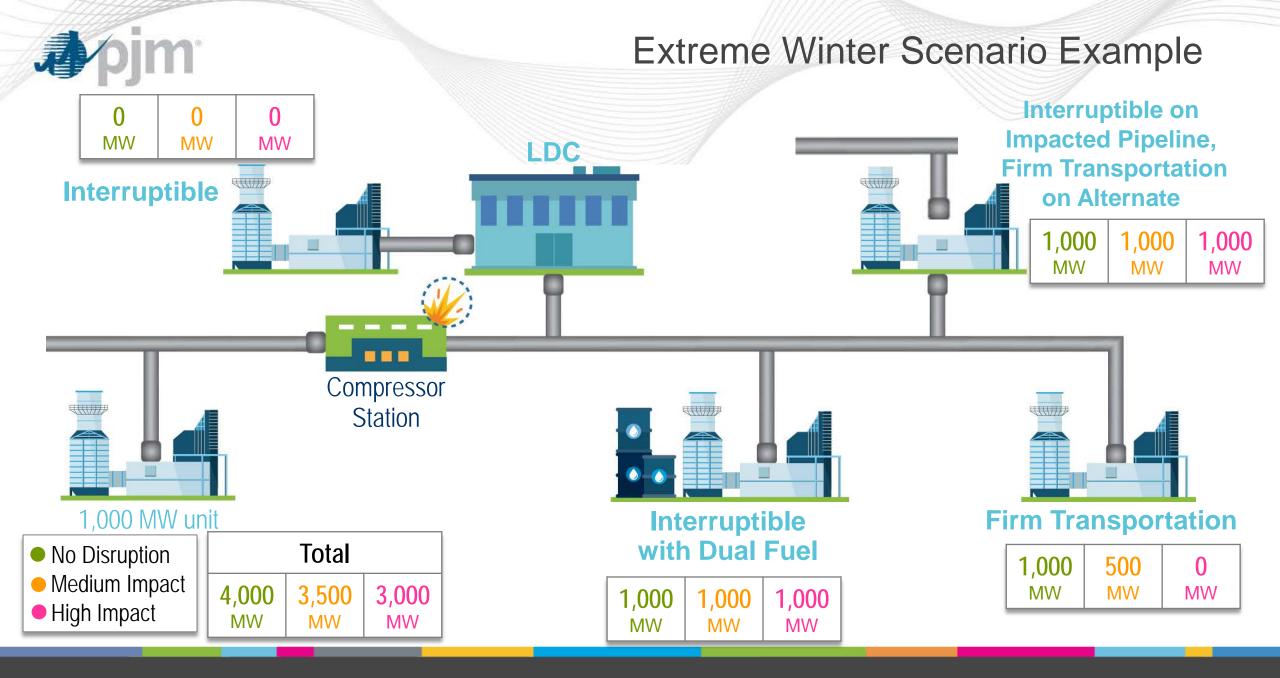
- PJM examined weather for the current PJM footprint back to 1973 and identified seven cold snaps of significant duration.
- PJM computed the average daily temperature at each weather station for each day of the last 45 winters. A PJM RTO average temperature was determined based on a load-weighted average across all 40+ weather stations.
- Focus on extreme temperature and duration.

Historical Cold Snap Impact on 2023/24 Winter Peak Load

						-		
2023/24 P	eak: 147,771 9	7th percentile	2023/24 Pea	ak: 150,442	99th percentile		2023/24 Pea	ak
	1989			1994				_
Date	Avg Temp	Wind Adj Temp	Date	Avg Temp	Wind Adj Temp		Date	
11-Dec-89	29.0	28.8	5-Jan-94	25.5	24.1] [22-Dec-17	Γ
12-Dec-89	26.7	26.5	6-Jan-94	28.8	28.5] [23-Dec-17	
13-Dec-89	24.2	23.7	7-Jan-94	30.0	29.5] [24-Dec-17	
14-Dec-89	19.9	19.2	8-Jan-94	20.4	18.5		25-Dec-17	
15-Dec-89	19.1	18.0	9-Jan-94	17.0	16.1		26-Dec-17	
16-Dec-89	12.9	10.6	10-Jan-94	21.0	20.4		27-Dec-17	
17-Dec-89	11.7	11.0	11-Jan-94	31.2	30.8		28-Dec-17	
18-Dec-89	14.3	13.9	12-Jan-94	33.9	33.6		29-Dec-17	
19-Dec-89	17.4	17.3	13-Jan-94	32.3	32.0		30-Dec-17	
20-Dec-89	16.3	15.5	14-Jan-94	22.4	20.6		31-Dec-17	
21-Dec-89	10.2	8.6	15-Jan-94	4.5	1.6		1-Jan-18	
22-Dec-89	3.0	1.6	16-Jan-94	5.2	4.1		2-Jan-18	
23-Dec-89	7.4	6.5	17-Jan-94	19.8	18.6		3-Jan-18	
24-Dec-89	10.4	9.0	18-Jan-94	5.9	3.3		4-Jan-18	
25-Dec-89	19.0	17.8	19-Jan-94	-4.0	-4.9		5-Jan-18	
26-Dec-89	21.8	19.6	20-Jan-94	6.3	6.3		6-Jan-18	
27-Dec-89	18.5	17.8	21-Jan-94	9.9	9.2		7-Jan-18	
28-Dec-89	28.5	27.9	22-Jan-94	22.9	22.2		8-Jan-18	\perp
29-Dec-89	31.1	30.9	23-Jan-94	32.0	30.9		9-Jan-18	\perp
30-Dec-89	35.2	35.0	24-Jan-94	39.8	39.1		10-Jan-18	
14-day Avg	14.4	13.3	14-day Avg	16.1	15.0		14-day Avg	

2023/24 Pea	ak: 140,159 8	38th percentile						
	2017/18							
Date	Avg Temp	Wind Adj Temp						
22-Dec-17	44.1	44.0						
23-Dec-17	43.7	42.6						
24-Dec-17	34.9	34.4						
25-Dec-17	27.3	24.2						
26-Dec-17	21.2	20.5						
27-Dec-17	17.0	16.5						
28-Dec-17	14.1	13.5						
29-Dec-17	18.6	18.4						
30-Dec-17	19.0	18.2						
31-Dec-17	12.6	11.7						
1-Jan-18	9.3	8.4						
2-Jan-18	11.0	10.2						
3-Jan-18	17.1	16.6						
4-Jan-18	17.4	14.1						
5-Jan-18	10.4	7.7						
6-Jan-18	9.3	7.8						
7-Jan-18	14.9	14.2						
8-Jan-18	29.6	28.7						
9-Jan-18	34.5	34.3						
10-Jan-18	37.9	37.3						
14-day Avg	15.6	14.4						


Focus of Fuel Delivery Infrastructure Risk


- Natural Gas Delivery Disruptions
 - PJM-identified disruptions on vulnerable locations on major pipelines that impact large pockets of generation (*Phase 1a*)
 - DOE-identified cyber and physical threats to fuel delivery infrastructure in the PJM footprint (*Phase 1b*)
- Oil Delivery Disruptions
 - Conservative assumptions about fuel replenishment
- Other Resource Types
 - Generator forced outage rates will account for issues with less dynamic fuel delivery (e.g., frozen coal piles).
 - Incorporation of other resource type disruptions is still under review.

Natural Gas Disruption Sensitivities Generation Assumptions

Phase	e 1a	Base Winter Load Scenario	Extreme Winter Load Scenario		
No Disru	uption	Units with firm transportation are available.Interruptible transportation is limited.	 Units with firm transportation are available. Units with interruptible transportation run on dual fuel (if capable), otherwise unavailable. 		
Credible	Medium Impact Disruption 50% pipeline capacity reduction downstream of failure	 Output of units with firm transportation on impacted pipeline reduced to 50% of EcoMax. Firm transportation on alternate pipeline is available. Units with interruptible transportation on impacted pipeline run on dual fuel (if capable) otherwise unavailable. Interruptible transportation on alternate pipeline is limited. 	 Output of units with firm transportation on impacted pipeline reduced to 50% of EcoMax. Firm transportation on alternate pipelines available. Units with interruptible transportation on impacted pipeline run on dual fuel (if capable), otherwise unavailable. 		
Disruptions	High Impact Disruption 100% pipeline capacity reduction downstream of failure	 Firm transportation on alternate pipelines available. Units with interruptible transportation on impacted pipeline run on dual fuel (if capable) otherwise unavailable. Interruptible transportation on alternate pipeline is limited. 	 Units with firm transportation run on dual fuel (if capable) or are unavailable. Firm transportation on alternate pipelines available. Units with interruptible transportation on impacted pipeline run on dual fuel (if capable), otherwise unavailable. 		

Operational Assumptions

	Base 50/50 Weather Scenario Extreme Weather Scenarios				
Model Year	 Most up-to-date future winter RTEP case 				
(2023/24)	 Accounts for announced generation retirements, queue generation with ISAs and/or has cleared in RPM, and associated transmission upgrades 				
Renewable Output	Hourly winter profiles for wind and solar				
Transmission Outages	None				
External Interchange	No external imports beyond long-term, full path firm transactions (includes pseudo ties)				
Contingencies	Account for monitored contingencies, including gas-electric contingencies				
Demand Response	Includes a determination of when DR capacity would be deployed				
Energy Efficiency	Accounted for in load forecasts				

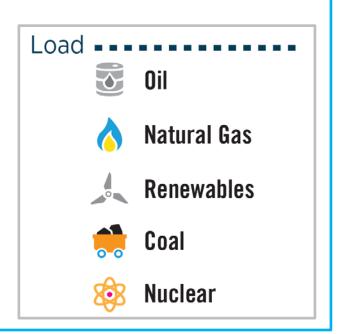
Operational Assumptions (continued)

	Base 50/50 Weather Scenario	Extreme Weather Scenarios
Generation Capabilities	 Dual fuel capability Supply and transportation contracts Maximum on-site fuel inventories; deple Conservative unit parameters to account 	etion based on unit heat rates It for winter operations (e.g., cycling capability)
On-Site Fuel Replenishment	Full inventory at start, and set MWh limitation based on anticipated number of refuels during study period (from outreach on refueling logistics)	 Full inventory at start, and set MWh limitation based on: 1. No replenishment for duration of simulation 2. Anticipated number of refuels during study period (from outreach on refueling logistics)
Generation Outages	 Five-year unit average EFORd Fuel delivery outage causes for natural gas and oil excluded 	 Historic cold-snap forced outage rates Fuel delivery outage causes for natural gas and oil excluded
Emissions Limits	Not a c	onstraint on operations
Fuel Prices	Fuel price forecasts for 2023/24	Forecasts for 2023/24 scaled for weather impacts

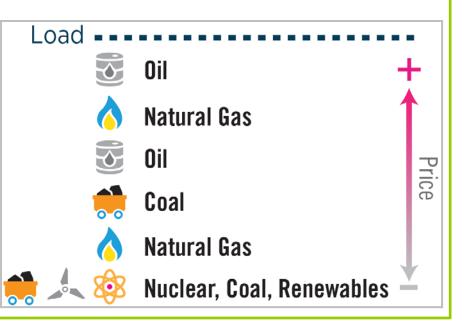
Study Case Summary

		Base Winter Load Scenario			Extreme Winter Load Scenario		
 Phase 1a (July/Aug) Phase 1b (Aug/Sept) 		Base	Retirement Sensitivities		Base	Retirement Sensitivities	
		Portfolio	Expected Reserve Margin	IRM (16.6%)	Portfolio	Expected Reserve Margin	IRM (16.6%)
Disruption Sensitivities	None						
	Medium Impact (PJM)						
	High Impact (PJM)						
	DOE-identified						

Dispatch Simulation Objectives


- Evaluate current capabilities of resources to mitigate fuel delivery infrastructure risk by determining impact of event on:
 - On-site fuel depletion
 - Transmission system
 - Ability to serve load
- Inform "fuel secure" definition as reference point in assessing current capabilities of resources
 - For example, "fuel secure" resources must demonstrate the capability to serve load at max output for XX hours or min output for YY hours to mitigate a ZZ-day duration risk.
 - All technology types/combinations would be eligible to demonstrate this criteria.

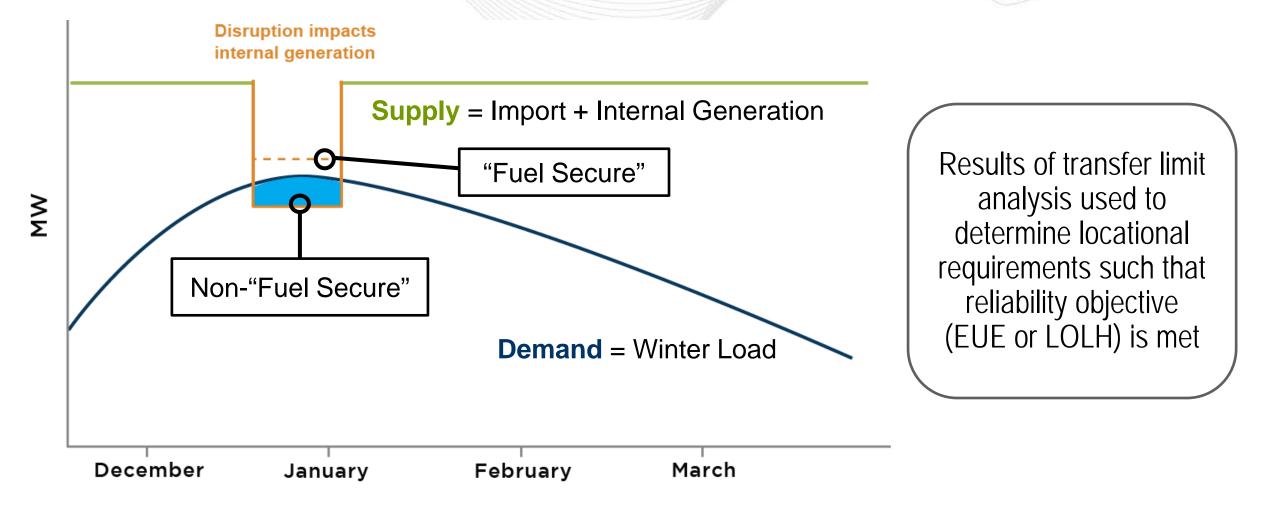
Dispatch Simulation Approaches


Block Dispatch

Blocks of units turned "on" based on resource type and winter capacity factors

Economic Dispatch

- Security constrained optimization taking input constraints on generation (on-site fuel inventory, gas availability) and fuel prices into account
- May show faster on-site fuel depletion when oil is more economic than gas



Detailed Transmission Analysis

- Use latest winter RTEP base case (2023/24)
- Examine N-1 conditions on both the transmission and gas systems
- Determine thermal and/or voltage issues in each scenario
- Determine impact of scenarios on transfer limits across PJM

Evaluate Locational "Fuel Secure" MW Requirement

Phase 1 Next Steps

- Gather stakeholder feedback
- Meet with industry representatives to refine assumptions
- Continue discussion with DOE to define extreme cyber and physical threat sensitivities
- Determine how to incorporate disruptions to resource types besides natural gas and oil
- Provide update on progress of Phase 1 in July