

Fuel Requirements for Black Start Resources Hiatus Activity Review Part 2

Dan Bennett Lead Engineer, Generation

OC/MIC Special Session March 10, 2022

PJM©2022

Stage 1 FRBSR Work

2019 – 2020

- Level of Fuel Assurance
- Universal Fuel Assurance Requirements
- Fuel Assurance Solutions by Primary Fuel Type
- Testing & Verification Requirements
- Compensation Mechanism
- Implementation Plan
- Solution Packages

Stage 2 Hiatus Work

2020 – 2021

- Enhanced Restoration Time Analysis
- Cost / Benefit Analysis Methodology
- Gas Supply Risk Assessment

FRBSR Roadmap

Stage 3 FRBSR Considerations

2022

- Updated Design Component Details and Solution Packages
- Enhanced Definitions
 of Fuel Assurance
- Hydro Packages to align with ELCC
- Inputs from FERC/NERC ERCOT Report

Key Concepts

Incremental Restoration Time Increase: Additional time required to restore a TO zone due to the loss of one or more BS sites above and beyond the theoretical zonal restoration time with all BS sites available.

<u>High Impact Black Start Site</u>: A BS site which, when unavailable during a restoration scenario, results in an incremental restoration time increase of ten hours or more. This ten hour cutoff is a PJM suggestion and not tied directly to any standards.

Hypothetical Case: Standard Restoration

Apjm[®]

Hypothetical Case: Timing Comparison and High Impact Black Start Sites

Scenario	Hypothetical Zonal Restoration Time	Incremental Restoration Time Increase	
Standard Restoration	9.0 Hours		
Scenario 1: Loss of Renton	11.5 Hours	2.5 Hours	hypothetical case can be found in
Scenario 2: Loss of Bremerton	19.5 Hours	10.5 Hours	The meeting materials for the February 10,
Scenario 3: Loss of Tacoma	14.5 Hours	5.5 Hours	meeting: LINK
Scenario 4: Loss of Bremerton & Tacoma	32.5 Hours	23.5 Hours	

Hypothetical Case: Scenario Fuel Assurance Conversion Costs

Scenario	Fuel Assurance Conversion	Annual Conversion Cost	
Scenario 1	Renton	\$100,000	
Scenario 2	Bremerton	\$3,000,000	
Scenario 3	Tacoma	\$2,000,000	
Scenario 4	Bremerton & Tacoma (common pipeline)	\$5,000,000	

Cost vs. Expected Cost of a Blackout

We can approximate the cost of a blackout:

Cost = Load (MW) x Duration (Hours) x Value of Lost Load (\$ / MWh)

And with that cost we can calculate expected cost:

Expected Cost = Cost x Probability of Occurrence

With extremely low frequency events like this, it is very difficult to estimate the probability of occurrence. So instead we can calculate the expected costs for a range of probabilities and see the trends in the expected cost. By comparing the expected cost against an annual fuel assurance conversion cost we can determine when it becomes cost effective to implement that conversion.

Value of Lost Load

The Value of Lost Load (VoLL) is a representation of the costs associated with the interruption of electric supply. VoLL is not a static number and there are many variables that impact VoLL.

Because of the complexity around VoLL, PJM used a range of values in its calculations during the hiatus analysis:

\$10,000 / MWh to **\$100,000 / MWh**

The objective was to provide a upper and lower bound for the analysis and provide stakeholders with a range of results.

Occurrence Frequency

The **occurrence frequency** is the frequency of an event (simultaneous blackout and fuel failure) required to <u>financially</u> justify the conversion investment and is represented as once every **X** Years.

More financially justifiable Only a rare occurrence needed

If **X** is small (e.g. 3 Yrs.)

Less financially justifiable Needs to be a common occurrence

Conversion of Renton VoLL = \$100,000

Conversion of Renton VoLL = \$10,000

Conversion of Bremerton VoLL = \$100,000

Conversion of Bremerton VoLL = \$10,000

Conversion of Tacoma VoLL = \$100,000

Conversion of Tacoma VoLL = \$10,000

Conversion of Bremerton and Tacoma

Voll = \$100,000

www.pjm.com | Public

Conversion of Bremerton and Tacoma

VoLL = \$10,000

Hypothetical Case: Scenario Occurrence Frequencies

Scenario	Fuel Assurance Conversion	Annual Conversion Cost	Occurrence Frequency (VoLL = \$10k)	Occurrence Frequency (VoLL = \$100k)
Scenario 1	Renton	\$100,000	6.8 years	68.5 years
Scenario 2	Bremerton	\$3,000,000	1.0 years	9.6 years
Scenario 3	Tacoma	\$2,000,000	0.8 years	7.5 years
Scenario 4	Bremerton & Tacoma (common pipeline)	\$5,000,000	1.3 years	12.9 years

- This methodology is a cost/benefit analysis of fuel assurance conversions of Black Start sites
 - This analysis is a purely financial calculation
 - This analysis factors in a probabilistic assessment of risk
 - This analysis integrates variables
 - Zonal Load
 - Value of Lost Load
 - Incremental Restoration Time Increase
 - Probability of Event
 - Fuel Assurance Conversion Cost

Presenter: Dan Bennett Daniel.Bennett@pjm.com

Facilitator: Janell Fabiano Janell.Fabiano@pjm.com

Secretary: Nicole Militello <u>Nicole.Militello@pjm.com</u> Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

Fuel Requirements for Black Start Resources

Appendix

- BSR (Black Start Resource): A generation resource capable of providing black start service during a restoration event
- CL (Critical Load): A generator, nuclear reactor, or electric gas compressor identified in a TO's restoration plan that must be energized by a BSR as part of the restoration process
- FA BSR (Fuel Assured BSR): A Black Start Resource that meets the fuel assurance requirements identified in the table in Slide 4
- NFA BSR (Non-Fuel Assured BSR): A Black Start Resource that does not meet the fuel assurance requirements identified in the table in Slide 4

Post-Hiatus Black Start Fuel Assurance Classification

Classification	Description
Fuel Assured (FA)	Black Start sites that can operate using fuel that is stored on site, this includes oil units and dual fuel units with the capability to start without requiring gas
Fuel Assured (Multiple Pipelines)	Gas only Black Start sites that are connected to more than one interstate natural gas pipeline
Non-Fuel Assured (NFA)	Gas only Black Start sites with one interstate pipeline connection
Non-Fuel Assured (LDC)	Gas only Black Start sites that receive their gas supply via a LDC connection
Non-Fuel Assured (Gas to Start)	Black Start sites that have fuel storage on site but require natural gas for startup ignition
Hydro	Black Start sites that rely on natural river flow to generate electricity or store an inventory of water in an elevated reservoir

Hypothetical Case: Scenario 1

Loss of Renton

Hypothetical Case: Scenario 1 Loss of Renton Timing

To account for the loss of Renton in a restoration, alternate black start sites must crank those critical loads in addition to what they normally crank.

