

HVDC Development Process

Designated Entity Design Standards Task Force

- Since 2005:
 - 1320 MW of power transmission infrastructure development, financing, construction and operation
 - \$1.5 billion in private investment
- Flagship Projects, both On Budget and Ahead of Schedule:
 - Neptune RTS: 2007; 660 MW; \$650 million
 - Hudson: 2013; 660 MW; \$850 million
- Actively pursuing additional, complementary projects

- 65- Mile-Long, 660-MW HVDC Cable Linking PJM Electricity Market with Long Island Power Authority ("LIPA")
- 51 Miles of Cable are Buried Undersea
- 14 Miles Underground
- Selected by LIPA in June 2004
 Via Competitive RFP Process
- Financial Close July 2005 with Investment-Grade Rating
- Completed June 2007 On Budget and Ahead of Schedule

Neptune RTS Project Team

Project management, permitting, financing, operations

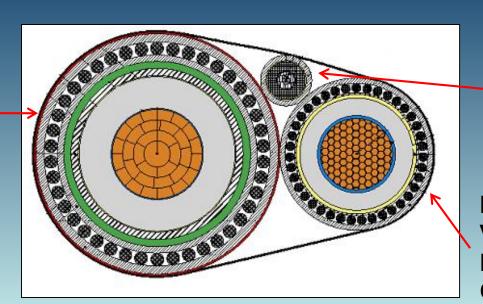
Principal Contractors:
Top global companies in HVDC and cable technology

Two Terminal Monopolar System Metallic Return

Advantages of HVDC Transmission

- Controlled Power Exchange
- Limitation of Short Circuit Currents
- Transmission at variable voltages
- No fault cascading

Cables Installed in Multiple Campaigns


Sayreville Converter Station

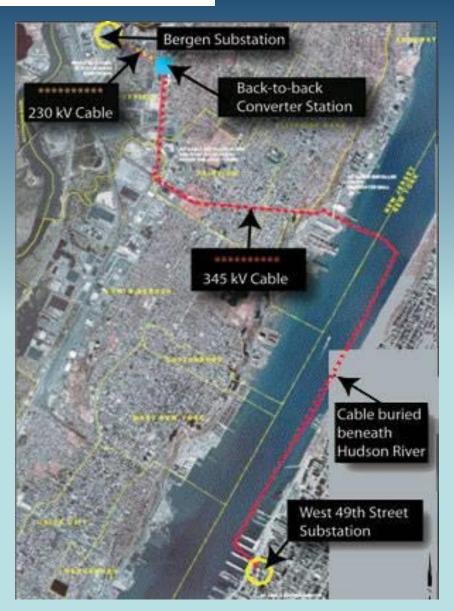
Neptune DC Cable

High Voltage
Main Cable
(Copper
Core)

Fiber Optic Cable

Medium Voltage Return Cable

Converter Transformer (Single Phase)


500 kV Cable Termination

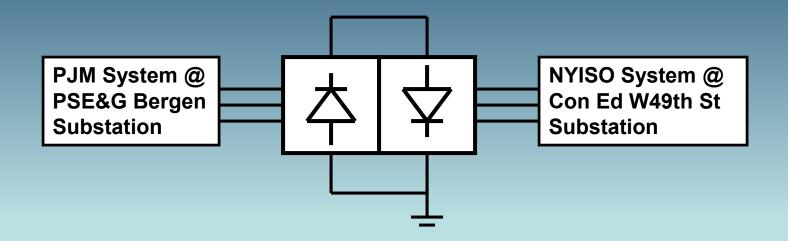
DC Smoothing Reactor

Hudson Transmission Project

- 8-mile underground and underwater power cable linking PJM and NY power grids between Ridgefield, New Jersey and West 49th St. Substation in NYC
- Single back-to-back converter station (AC-DC-AC) located in Ridgefield, NJ
- Project commencement in May 2011
- Completed ahead of schedule and under budget May 2013

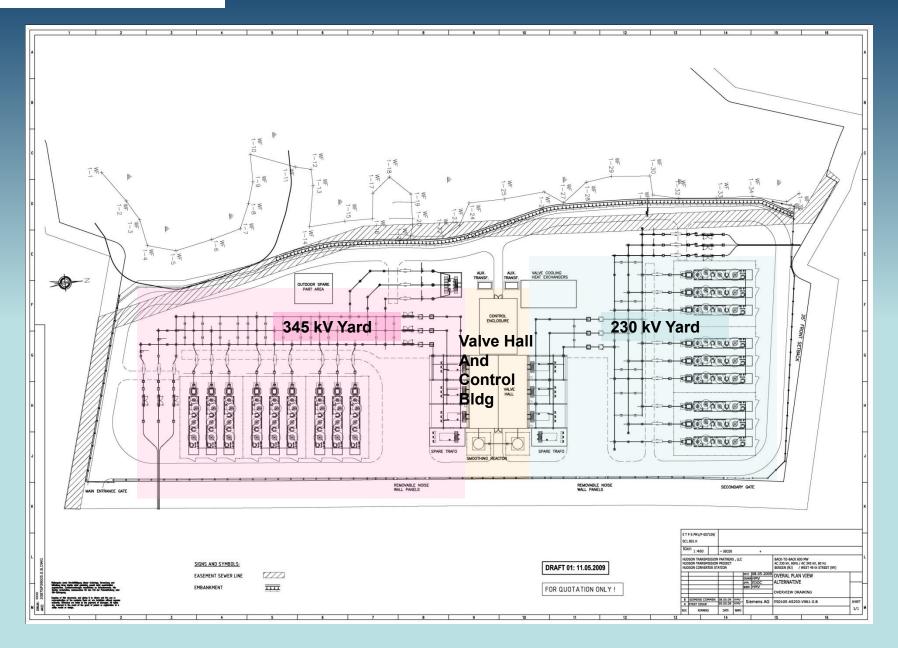
Hudson Transmission Project Team

Comprising the Neptune Project Team – project management, permitting, financing success



Principal Contractors for Neptune – top global companies in HVDC and cable technology

Back-to-Back Monopolar System



Advantages of HVDC Transmission

- Controlled Power Exchange
- Limitation of Short Circuit Currents
- Transmission at variable voltages
- No fault cascading

Back-to-Back Converter Station

HVDC Development Stages

* = inc. cooperation with Interconnecting Utilities and ISOs

- Pre-Engineering Studies
- Interconnection Studies*
- Interconnection Agreement (IA) Technical
 Specification Development*
- Post IA Detailed Design*
- Component Manufacture
- Installation
- Commission Testing*

Pre-Engineering Studies

- Terminal Location(s)
 - Network area(s) that could benefit from new transmission and HVDC
 - Close to robust interconnection points (minimize AC pathway)
 - Sufficient Converter Space (8+Acres for LCC; 5+/-Acres for VSC)
 - Attainable Interconnection Pathway (Existing ROWs; R/R; Water; or Public Roads)
- Project Development to support IR(s) and Permitting
 - Terminal Layouts and One-Line Diagram(s)
 - ROW acquisition
 - Installation Methods
 - Environmental Impacts

Interconnection Studies

- Preliminary Electrical Characteristics
 - Voltage performance: Reactive allowances and limitations
 - Power Quality at interconnecting points
 - Harmonic Impedances (long-term measurements)
- Interconnection Optimization
 - Substation Access
 - Breaker position(s)
- PSS/E Modeling (Best Estimate definitions)
- Feasibility/SRIS Studies
- Technical Specification Development

IA Technical Specification Development

PJM Interconnection, LLC and Public Service Electric and Gas Company

TECHNICAL PERFORMANCE SPECIFICATION

For the

Bergen (Hudson Transmission Project) 230 kV HVDC PROJECT Ridgefield, NJ

May 9, 2009

PJM Interconnection, LLC and Public Service Electric & Gas Company Technical Performance Specification

Table of Contents

F	REFACE		. 4
	PSE&	G AC Power System Characteristics & Requirements	4
	1.1.	AC Voltage at Bergen Switching Station	
	1.1.1.	Nominal voltage	
	1.1.2.	Normal operating voltage range	
	1.1.3.	Continuous voltage range during extreme or unusual conditions	
	1.1.4.	Steady-state negative sequence voltage	
	1.1.5.	Operation for PJM emergency orders	
		System Frequency	
	1.2.1.	Nominal frequency	
	1.2.2.	Temporary frequency range	
		Short-Circuit Capacity at Bergen Switching Station	
	1.3.1.	Initial normal short-circuit current capacity range	
	1.3.1.	Minimum Bergen Switching Station short-circuit capacity for n-2 contingency	
	1.3.2.	Minimum Bergen Switching Station n-3 contingency short-circuit capacity	
		Circuit Breakers and Circuit Protection.	
	1.4.1.	Ratings of breakers at Bergen Switching Station substation	
	1.4.2.	Breaker fault clearing times at Bergen Switching Station	10
	1.4.3.	Reclosing practices	10
	1.4.4	Interconnection breakers	
	1.5.	Power Line Carrier Systems	
	1.6.	Substation Requirements	1.
	1.7.	AC System Conditions at the W. 49 th Street Substation	1.
2.		Project Performance Requirements	
		Power Transfer	
	2.1.1.		12
	2.1.2.		
	2.1.3.		
	2.2.	AC Steady-State Voltage and Reactive Requirements	
	2.2.1.		
	2.2.2.		
	2.2.		
	2.2.		
	2.2.	2.3. Transient voltage change	13
	2.2.	2.4. Effect of switching on converter operation	14
	2.2.	2.5. Binary switching	14
	2.2.3.	AC voltage and reactive control	
	2.2.	3.1. Automatic reactive bank control	1.
	2.2.	3.2. Coordination of reactive control with harmonic filtering requirements	16
	2.2.		
	2.2.4.	Bank availability for reenergization	
	2.2.5.		
	2.3.	Disturbance Tolerance	18
	2.3.1.	Commutation failure avoidance	18
	2.3.2.		18
	2.3.	2.1. Major ac voltage disturbances	18
	2.3.		
	2.3.3.		2
		Dynamic Performance	
	2.4.1.		
	2.4.2.		
	2.4.		
	2.4.		
	2.4.		
	₩. Т.	- Commencer Interestrate	

PJM Interconnection, LLC and Public Service Electric & Gas Company Technical Performance Specification

2.	4.2.4.	Recovery from ac faults	 22
2.	4.2.5.	Irrecoverable faults.	 22
2.	4.2.6.	Failure to meet disturbance recovery performance	 23
2.4.3	. HVD	C Control stability	 23
2.5.		tage Control	
2.5.1	. Defin	itions	 23
2.:	5.1.1.	Dynamic overvoltage	 23
2.:	5.1.2.	Dynamic overvoltage envelope	 24
2.:	5.1.3.	Related sequence of events	 24
2.5.2	. Dyna	mic overvoltage limits	 25
2.5.3		mic overvoltage control	
		Reactive bank tripping	
2.:		Use of converter for dynamic overvoltage control	
2.:		Failure of primary overvoltage control equipment.	
2.5.4		arrester coordination	
2.6.		ring Requirements	
2.6.1		ground and specification philosophy	
2.6.2	. Perfo	rmance Criteria.	 29
2.0		System and environmental conditions.	
2.0	6.2.2.	Specific distortion limits:	
2.6.3	. AC s	ystem data	 32
2.6.4	. Desig	m Review	 32
2.6.5		rmance Monitoring	
2.7.	Torsiona	al Interaction	 32
2.7.1	. Studi	es by Others	 32
2.8.	Coordina	ation with switchgear voltage capabilities	 33
2.9.	Duration	of Performance Requirements	 33
Com	munication	n, Control, and Protection Interface	 34
3.1.	Telecont	trol	 34
3.2.	Relaying	2	 34
Desi		formance Verification Studies	
4.1.		Requirements	
4.2.		equirements	
4.3.		t Simulation Model	
Com	missioning		37

3.

05/09/09

Post IA Detailed Design

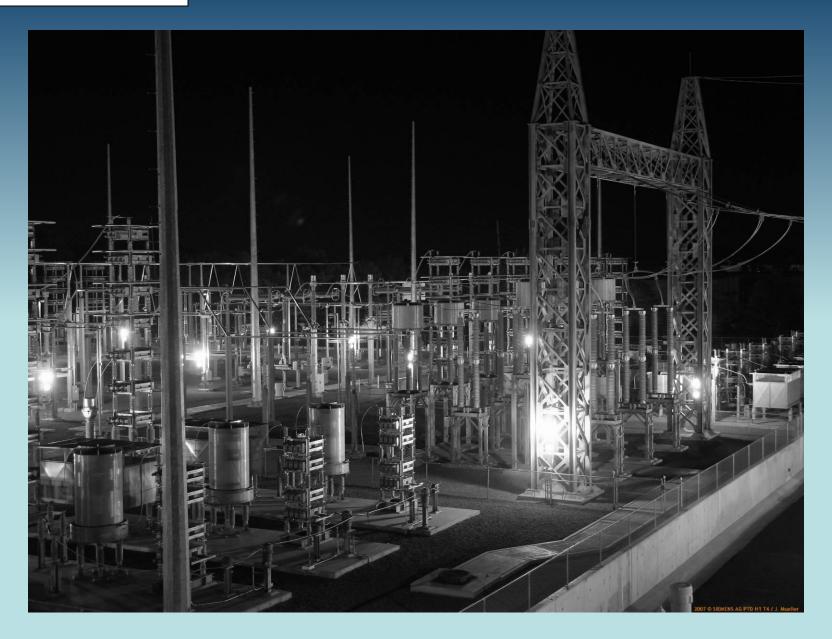
Design Reports

- 1. Project Main Circuit Design: Verify technical parameters of IAs and EPC contract
- 2. Reactive Power Flow Exchange: Verify allowable levels versus filter design
- **3. AC Protection and Metering:** Coordinate interconnecting design with utilities
- **4. Dynamic Performance:** Verify HVDC system behavior vs. system transients
- **5. PLC Filter Design:** Ensure HTP avoids interference with local PLC communication systems
- **6. Circuit Breaker Coordination:** Determine station breaker ratings and coordinate with interconnecting utilities.

- **7. SSTI Studies:** Evaluate interaction of HVDC Station with local generators and other FACTS
- 8. AC System Harmonic Performance: Verify harmonics do not exceed technical requirements
- 9. Insulation Coordination Studies: Establish insulation and arrester levels of the main equipment for converter station and interconnecting stations
- **10. Control Implementation:** Define SCADA system parameters and interconnecting utility data points
- 11. Load Flow and Stability Models (PSS/E): Final models to ISOs & Interconnecting Utilities

POWERBRIDGE

Component Manufacture


- DC Valves
- Converter Transformers
- AC Switchyard Devices
 - Reactive Banks (for LCC; VSC may be NR)
- Protection and Control
 - Individual Panels, inc. FST
 - All-inclusive system, inc. DST (* for witnessing)

POWERBRIDGE

Component Manufacture

- Installation
- Commission Testing*
 - Voltage and reactive power control tests
 - AC Harmonic Filter performance tests
 - Power-Line Carrier Filter performance tests
 - Radio Interference performance tests
 - Television Interference performance tests
 - Nameplate Power Transfer
 - Load Losses

THANK YOU!

For more information please visit www.powerbridge.us