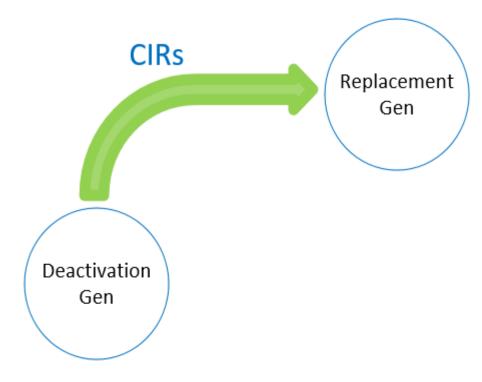


Capacity Interconnection Rights (CIR) Transfer Process Education


Ed Franks
Interconnection Analysis Department
Interconnection Process Subcommittee
July 31, 2023

www.pjm.com | Public PJM©2023

CIR Transfer Process

- Transfer CIRs from a Deactivation capacity generation resource to a Replacement generation resource
 - Requires an official Deactivation Notice sent to PJM (for the Deactivation resource)
 - Requires a New Service Request application submitted to PJM (for the Replacement resource)
 - Within 1 year of Actual Deactivation Date (before CIRs expire)
 - Must also note the intent to claim and transfer CIRs via submission of "Notice of Intent to Transfer CIRs" form
- The Replacement generation resource, along with the CIR Transfer, is evaluated and processed as part of the PJM New Services Request Process

CIR Transfer Process – Key Details/Clarifications

- CIR Transfer Process is applicable to all generation resources provided that the resource has CIRs (i.e. Capacity Generation Resources)
 - Only CIRs may be transferred (i.e. "Capacity MWs")
 - "Energy-Only" rights/MWs are not eligible for CIR Transfer
- Replacement generation resource is not required to be located at the same Point of Interconnection (POI) as the Deactivation generation resource
 - The CIR Transfer Issue Charge applies only to Replacement Generation Capacity Resources located at the same POI as the Deactivation resource.
 - Different POIs are out of scope of the Issue Charge and CIR Transfers associated with different POIs will remain being processed and evaluated under existing processes.

www.pjm.com | Public 9JM©2023

Evaluation of CIR Transfers

- ➤ Reliability Analysis is done as part of the PJM New Services Request Process, as the Replacement generation resource is required to enter this process.
- Reliability Analysis is performed to:
 - 1. Determine impacts to system capability for the proposed transfer of CIRs from a Deactivation generation resource to a Replacement generation resource
 - a. Determine impacts to system capability due to the Replacement generation resource itself (i.e. the "CIRs" may not cause a reliability violation, but the electrical characteristics of the Replacement resource may)
 - 2. Determine and assign cost responsibility for transmission system upgrades, if impacts are found
 - a. The Replacement generation resource is part of a Cycle within the PJM New Services Request Process and cost responsibility may be shared with other New Service Requests in the same Cycle.

Evaluation of CIR Transfers - Scope of Reliability Analysis – Load Flow, Short Circuit, Stability

Load Flow

- Evaluate thermal system capability by comparing the Deactivation resource's POI, MW capabilities, and Fuel to the Replacement resource's POI, MW capabilities, and Fuel
- Includes various models/seasons (Summer Peak, Winter Peak, Light Load)
 - Key Input #1: What is the delta/difference in magnitude of CIRs being transferred?
 - Key Input #2: Is there additional "Energy-Only" MWs, in addition to the CIRs, being requested by the Replacement resource?
 - Key Input #3: What types of generation are involved in the transfer for both the Deactivating resource as well as the Replacement resource (i.e synchronous, wind, solar, storage, etc.)?
 - Each generation type can have different Deliverability ramping criteria per the PJM Generator Deliverability Test
- Electrical characteristics of Replacement resource vs. Deactivation resource (key for Short Circuit & Stability)
 - Machine parameters (synchronous generator, inverter)
 - Other equipment parameters (transformers, collector system, attachment line)

Short Circuit

- Evaluate short circuit capability on the system by comparing the Deactivation resource's POI and Electrical characteristics to the Replacement resource's POI and Electrical characteristics
- Does the Replacement resource cause an increase in fault current as compared to the Deactivation resource?
- If so, is there any equipment overstressed that would require upgrading?

Stability

- Monitor system performance by comparing the Deactivation resource's POI, MW output, and Electrical characteristics to the Replacement resource's POI, MW output, and Electrical characteristics
- Does the Replacement resource introduce any instability on the system as compared to the Deactivation resource?

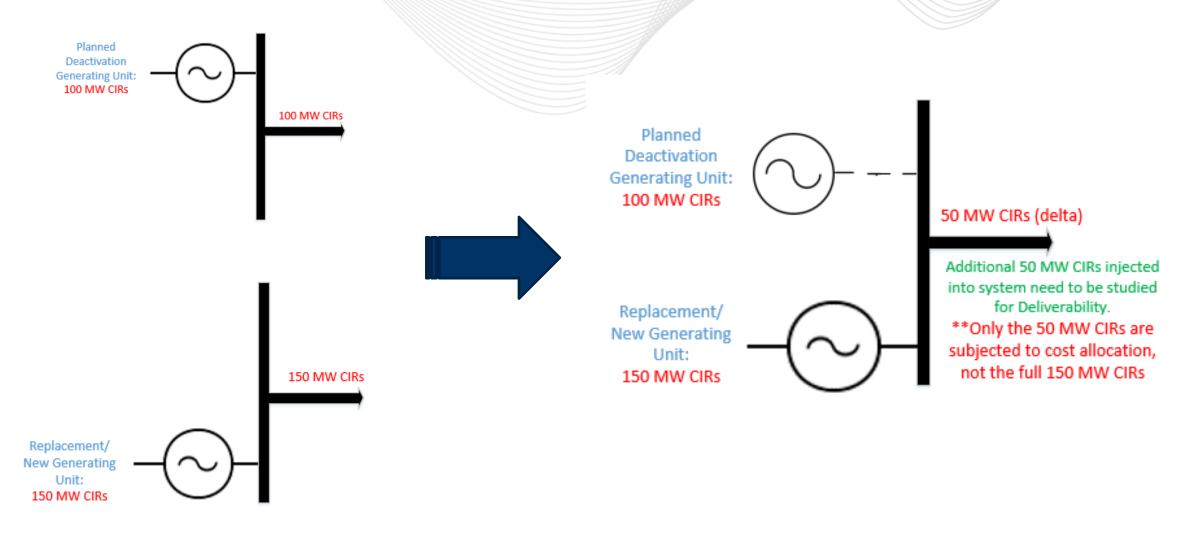
Evaluation of CIR Transfers - Scope of Reliability Analysis – Summary

MFO/MWE Fuel

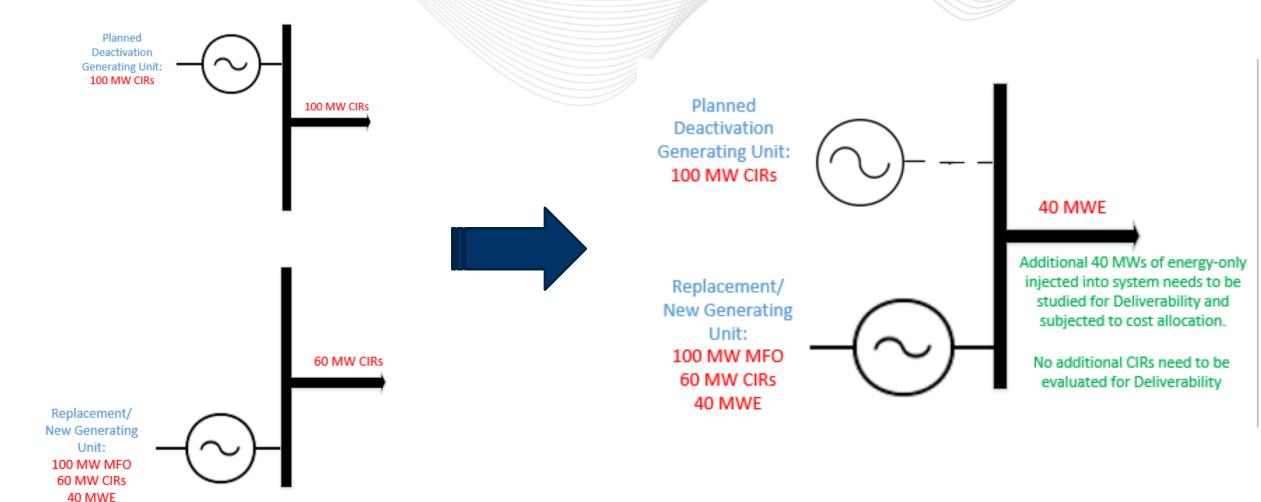
POI CIR

> Load Flow, Short Circuit, Stability

Electrical
Data:
Generator
Inverter
Transformer
Configuration


Evaluation of CIR Transfers – Example 1 (Load Flow)(same fuel type)

www.pjm.com | Public 7 PJM©2023


Evaluation of CIR Transfers – Example 2 (Load Flow)(same fuel type)

www.pjm.com | Public 8 PJM©2023

Evaluation of CIR Transfers – Example 3 (Load Flow)(same fuel type)

www.pjm.com | Public 9 PJM©2023

	Summer Peak Deliverability		Winter Peak Deliverability		Light Load Deliverability	
	Single	Common Mode		Common Mode		Common Mode
	Contingency	Contingency	Single Contingency	Contingency	Single Contingency	Contingency
					If in Base Dispatch:	If in Base Dispatch:
Deactivation	CIR	Max Summer Net	Max Winter Net	Max Winter Net	CIR*(1-PJM EEFORd)	CIR*(1-PJM EEFORd)
Resource					If not in Base Dispatch: If not in Base Dispatch:	
(Coal)					0	0
Replacement						
Resource	CIR	P80%	P80%	P80%	Canacity Factor	Congoity Footor
(Tracking	CIR				Capacity Factor	Capacity Factor
Solar)						

Ramping limits/criteria above per new PJM Generator Deliverability Test (M14B), approved in Jan. 2023. For more details, please see M14B.

100	MW	MFO
100	MW	CIRs

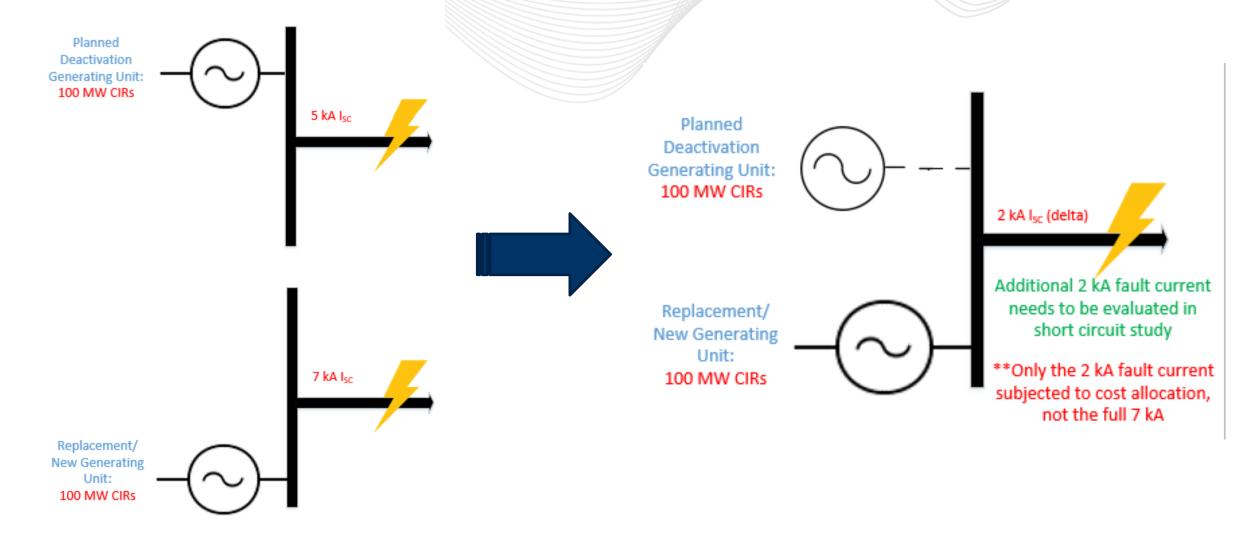
100 MW MFO 60 MW CIRs 40 MWE

	Summer Peak Deliverability		Winter Peak Deliverability		Light Load Deliverability	
	Single	Common Mode		Common Mode		Common Mode
	Contingency	Contingency	Single Contingency	Contingency	Single Contingency	Contingency
Deactivation						
Resource	100 MW	100 MW	100 MW	100 MVV	0 MW	0 MW
(Coal)						
Replacement						
Resource	60 MW	85 MW	5 MW	5 MW	55 MW	55 MW
(Tracking	OU WIVV	OO WWV	S IVIVV	3 10100	33 IVIVV	33 10100
Solar)						

MW values used in this table are for illustration purposes only.

Thermal Observations:

Summer Peak/Winter Peak: The MWs ramped/delivered from the Deactivating Coal resource exceed the MWs ramped/delivered from the Replacement Solar resource.


Thus, there would be no thermal load flow violations introduced by the Replacement Solar resource.

Light Load: The MWs ramped/delivered from the Replacement Solar resource exceed the MWs ramped/delivered from the Deactivating Coal resource.

Thus, there could be thermal load flow violations introduced by the Replacement Solar resource that would require testing.

Evaluation of CIR Transfers – Example 5 (Short Circuit)

www.pjm.com | Public PJM©2023

CIR Transfer Process – References

- PJM Tariff, Part VI
 - Sections 230.3.3 & 230.4
- PJM Tariff, Part VIII
 - Section 403, D.1
 - Section 426, C.3 & C.4
- PJM Manual 14H (seek endorsement at 7/26/23 MRC)
 - Section 2.2.1
 - Section 9.5.3
- PJM Manual 14B
 - Attachment C.3 "Deliverability of Generation" (i.e. Generator Deliverability Test)

Presenter: Ed Franks

Edmund.Franks@pjm.com

CIR Transfer Process Education

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com