

Benefits Factor and the "Effective" MW

Scott Benner July 1st, 2015

PJM©2015

Agenda

- 2011 KEMA Study on Dynamic Regulation
- Benefits Factor Curve Formulation
- Performance Based Regulation
- Performance Score Calculation Engine (PSCE)
- Settlement Considerations

Benefits Factor Formulation

- In Summer 2011, PJM commissioned KEMA to study the impact on system control by simulating two variables of dynamic signal following resources
 - Increasing dynamic resource participation
 - Lowering regulation capability requirement
- Finding 1
 - Some fast is better than none
- Finding 2
 - Found an inflection point where adding additional dynamic regulation caused CPS1 scores (System Reliability) to decrease

KEMA Study

What it is

- Simulation of perfect RegD vs lagging RegA
- 4 representative seasonal weeks
- 2-second interval Power Flow vs Unit Commitment

What it is not

- Analysis of actual
 resource performance
- Determination of relation to seasonality
- Source of Benefits
 Factor Curve

So What is the Benefits Factor Curve?

The Benefits Factor:

- Models the rate of substitution between traditional (RegA) and dynamic (RegD) resources
- Enables the market to translate fast moving resource's regulation MW into traditional MW, or <u>effective</u> MW
- Adjusts RegD resource's offer price

Benefits Factor Curve Formulation

- Averaged the CPS-1 results for the 4 simulated weeks
- For a constant requirement,
 - From A, each additional RegD resource improves reliability
 - At ~ 42%, reliability is the same as no RegD at all, so the benefit is 1.0.
 - Beyond 42%, each additional
 RegD harms reliability, so the
 benefit should be < 1 to zero.

Regulation Requirement [from 0.5% to 1.0% of RTO load

PJM©2015

Benefits Factor Curve in Clearing

Benefits Factor Curve in Market Clearing

- Provides a sliding scale that makes RegD resources more desirable until the optimal resource mix of 30-45%. It translates a RegD MW into a RegA MW.
- Ranges from 2.9 to 0.01

What drives Performance Based Regulation?

- The Regulation Market should incentivize
 - Accuracy following a shape
 - Timeliness reduce delay in response
 - Precision provide ACE correction
- Objective uniform scoring methodology
 - Signal vs. Response
- Resource's *Performance Score* [0..1] should capture these characteristics

Performance Score Components

1) Accuracy – the correlation or degree of relationship between control signal and regulating unit's response

- 5 minute rolling correlation with 10 second granularity
- Re-calculated with a 10 second time shift up to 5 minutes

2) **Delay** – the time delay between control signal and point of highest correlation from Step 1.

- Up to 5 minutes
- 3) **Precision** The instantaneous error between the control signal and the regulating unit's response.
- Performance Score = A [Score_A] + B [Score_D] + C [Score_P]
 - A, B, C are scalars from [0..1], total to 1. Currently 0.333 each
 - Produces a weighted average of component scores

Mileage as Work Performed

 Mileage is the absolute sum of movement of the regulation signal in a given time period

$$Mileage_{RegA} = \sum_{\substack{i=0\\n}}^{n} |RegA_i - RegA_{i-1}|$$
$$Mileage_{RegD} = \sum_{\substack{i=0\\i=0}}^{n} |RegD_i - RegD_{i-1}|$$

 Resources following the dynamic signal will move much more than those on traditional signal

Regulation Market Clearing

For each resource, calculate

 $Adjusted \ Total \ Offer \ Cost \ (\$) = \begin{pmatrix} Adjusted \\ Regulation \\ Capability \\ Cost \\ (\$) \end{pmatrix} + \begin{pmatrix} Lost \\ Opportunity \\ Cost \\ (\$/MW) \end{pmatrix} + \begin{pmatrix} Adjusted \\ Performance \\ Cost \\ (\$) \end{pmatrix}$

$$= \frac{11a fabrica + 0 tat + 0 f + 0 to t}{Capability (MW)}$$

Order resources by rank price, clearing by Effective MW

Performance Payment

LOC is the foregone revenue or increase in costs relative to the energy market for providing regulation

- Calculated only for resources providing energy along with regulation service
- Calculated only for pool scheduled regulation resources
- Is \$0 for DSR, self-scheduled regulation, and Non-Energy Regulation resources
- Can only be positive, else zero
- Calculated only within Eco limit range
 - > Economic Minimum to Economic Maximum range
- Co-optimized with energy in intra-hour Regulation Market Clearing Price

- Marginal resource sets Total Regulation Market Clearing Price (RMCP)
 - Performance Clearing Price (PCP) is the maximum of Adjusted Performance Cost/MW over all committed resources
 - Capability Clearing Price (CCP) is the residual, Total RMCP minus PCP
 - Marginal Benefits Factor (MBF) reported, but isn't consumed by anything

Market Clearing Process

What is PSCE?

- Performance Score Calculation Engine (PSCE)
 - Calculates hourly scores for all regulating units for settlements credits
 - Calculates daily scores for ASO clearing & settlements LOC credits
 - Calculates 5-minute mileage for RMCP (-P/-C) pricing
 - Calculates hourly mileage for settlement credits
 - Calculates daily mileage for ASO clearing
- Windows Service runs continuously, User Interface on demand ... Same code behind

Performance Score Calculation Engine

Jpjm

- Hourly Performance Scores
 - Solve at 15 min after every hour, for the previous operating hour
 - For every assigned unit, pull 10-sec telemetry from the PI Historian and blend it with market resource assignment and ramp rate data
 - 10-sec values are rolled into hourly averages
 - Detail available upon request
 - Values are loaded into markets databases

- Regulation Accounting rules are defined in Manual 28 Section 4
 - Resources are paid on capability, performance and lost opportunity
 - Payments are scaled by hourly accuracy scores
 - Dynamic resources are given additional payment as a function of hourly REGD/REGA mileage ratio
 - A dynamic resource is asked to move ~ 3 times as much as a traditional resource in an average hour
 - After-the-fact analysis of the REGA and REGD signals determines the multiplier

- "Shoulder Hour" Lost Opportunity
 - Ramping into and out of service occurs outside the operating hour
 - Is included in Clearing, as an estimate
 - Is not included in 5-minute Pricing
 - Is included in Settlements, as unit specific LOC
- Product Substitution
 - Unit-specific Benefit Factor used in Clearing
 - Unit-specific Benefit Factor used in Pricing
 - <u>Mileage Ratio</u> used in Settlements

Regulation Market Settlements

- Resources' hourly credits are calculated using actual performance scores and mileage
- Marginal benefit factor will not scale payments like pricing

• After-the-fact make whole payments (LOCC) have been greatly reduced; shoulder hour logic is now primary driver

Why Mileage Ratio?

- FERC issued a Deficiency Notice during PBR development
 - Marginal Benefits Factor (MBF) not allowed in Settlements
 - Operated with a "1" multiplier until July 2013
 - PJM resettled almost a year's billing with Mileage Ratio in Oct 2013
- Hourly Mileage Ratio = Mileage_{RegD} / Mileage_{RegA}
 - 2015 YTD Average ≈ 2.38
 - Mileage Ratio often larger than MBF; incentivizes more Reg D