

Regulation Clearing and Benefits Factor Calculation

Regulation Performance Impacts

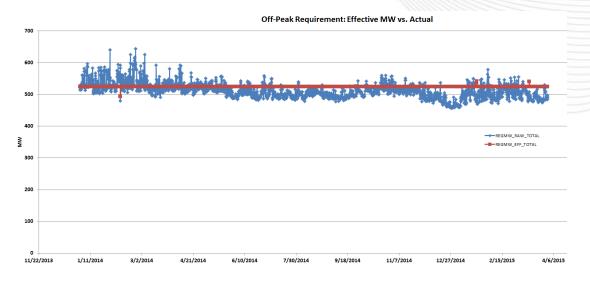
July 16, 2015

Michael Olaleye

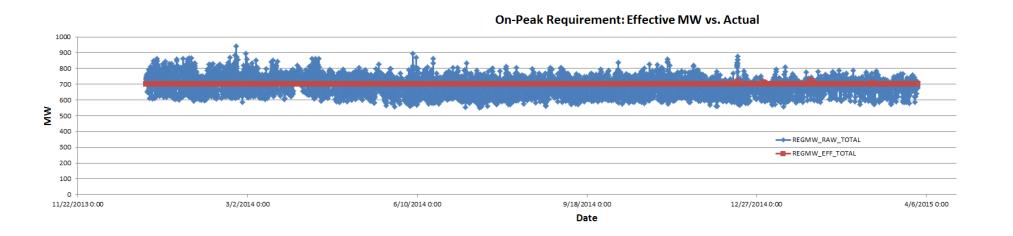
Senior Engineer, Real-Time Market Operations

www.pjm.com PJM©2015

- Regulation is cleared every hour for one hour look-ahead
 - Pricing is done every 5 minutes along with energy LMP in real-time
- Regulation is cleared to meet the established requirements
 - ➤ 525 Effective MW for Off-peak (0000 0500)
 - > 700 Effective MW On-Peak (0500 0000)
- One RTO Regulation market and therefore one uniform clearing price (RMCP)
 - Clearing is based on merit (cost, performance, and benefits to the system)
 - > Clearing price separates into capability and performance clearing prices (CCP and PCP)
 - No clearing price based on signal type (RegA, RegD)
- The Area Control Error (ACE) is not a factor in the clearing process
 - > Regulation is cleared one hour before operating time

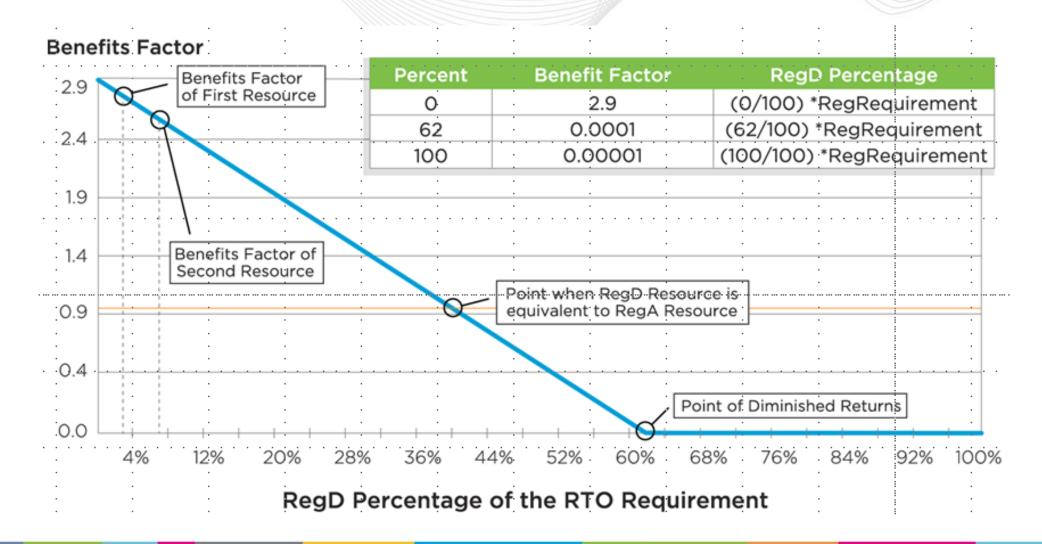

Regulation requirement is met with effective MW

 $Effective\ MW = RegMW\ * Performance\ Score\ * Benefits\ Factor$


- > Effective MW is used only in the market clearing
- Regulation Dispatch and Operation use RegMW (not effective MW)
- Market Settlements credit resources based on RegMW and performance (not effective MW)
- Example: A RegD of RegMW = 32: assume PS = 1.0, and BF = 2.5
 - ➤ Market: Effective MW = 32*1*2.5 = 80
 - ➤ Operation and Dispatch: RegMW = 32
 - Market Settlements credit: based on RegMW and real-time performance score, and signal mileage ratio

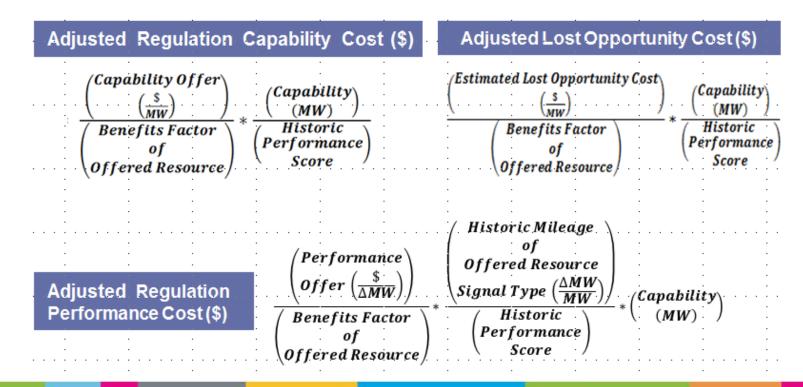
Effective MW vs. Actual

	Effective MW	Ave. Actual MW	Ave. MBF
Off	525	511	2.20
On	700	697	2.14



- The Benefits Factor (BF) models the rate of substitution between traditional RegA and dynamic RegD resources;
- It enables the market to translate a fast moving resource's regulation MW into traditional MW, or effective MW;
- It also adjusts the total cost of a RegD resource to make it attractive to the market clearing engine until the least cost optimum mix of RegD effective MW as a percentage of the regulation effective requirement;
- Resource specific BF is calculated for all eligible RegD resources during the regulation market clearing process;
- The benefits factor for RegA resource is 1

Benefits Factor Curve



- BF is calculated for all eligible RegD resources
- The calculation is one of the initial steps in the regulation clearing and pricing
 - Clearing in Ancillary Service Market Optimizer (ASO) an hour ahead
 - Pricing in Locational Pricing Calculator (LPC) in real-time
- The Marginal Benefits Factor is the BF of the last RegD resource cleared to provide regulation service
 - ➤ MBF is a value determined after regulation clearing is completed
 - It has no effect in the regulation clearing
 - It is not used in regulation pricing
 - ❖ It is not used in the Market Settlement for regulation credit

- Step 1:
- All eligible RegD resources are ranked in ascending order of the Adjusted Total Cost
 - The calculation uses LMP energy-only
 - The initial BF of all RegD are assumed to be 1

The Adjusted Total Cost in compact form

The Adjusted Total Cost (\$) =
$$\left(\frac{Cap \$ + LOC \$ + Perf \$}{PS * BF} \right)$$

- The modeling equation has performance score and benefits factor as denominators
 - High PS resources will look cheaper to the clearing engine
 - RegD with BF > 1 looks cheaper, but BF < 1 looks expensive</p>
 - > The modeling is ineffective for instance when
 - Multiple resources regulation self-scheduled
 - ❖ Multiple resources offer at \$0

Instance when multiple resources self-scheduled and/or offer at \$0 cost

		Reg Offer	Total Offer			Effective MW	Adjusted
Resource	Type	MW	Cost (\$)	Offer Type	Perf Score	(for BF)	Total Cost (\$)
Α	RegD	100	0	Economic	0.95	95	0
В	RegD	100	0	Economic	0.9	90	0
С	RegD	100	0	Economic	0.86	86	0
D	RegD	100	2	Self-Scheduled	0.7	70	0
E	RegD	100	3	Self-Scheduled	0.8	80	0
						421	

- ➤ Resources A through E have the same Adjusted Total Cost of \$0
- ➤ A- E look like a single resource with effective MW = 421
- ➤ A E will be assigned the same BF which is 0.087
- A revised equation that will factor in PS and BF when resources self-scheduled or offered at \$0 will be necessary

www.pjm.com 10 PJM©2015

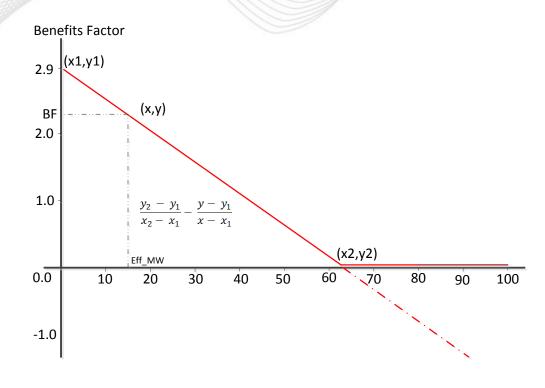
Step 2: Initial Effective MW

 $\overline{Effective\ MW_{initial}} = RegMW * PS * BF$

- ➤ BF is assumed = 1
- Effective MW can only be greater than or equal zero (not negative)
- > Any resource with a negative BF is not eligible to clear for regulation

Effective MW Summation Based on Adjusted Effective Cost Ascend

	Resources	Туре	Reg Offer MW	PerformanceScore	Adj_Total_Cost	Eff_MW_for_BF	Rolling Effective MW rank asc
L	Н	REGD	20	0.976	1.024590164	19.52	19.52
3	J	REGD	20	0.946	1.057082452	18.92	38.44
ļ	K	REGD	1	0.944	1.059322034	0.944	69.12
7	Р	REGD	31.5	0.944	1.059322034	29.736	69.12
L	Q	REGD	4	0.939	1.064962726	3.756	72.876
3	R	REGD	20	0.925	1.081081081	18.5	91.376
ō	S	REGD	1.5	0.923	1.083423619	1.3845	92.7605
L	Т	REGD	2	0.918	1.089324619	1.836	94.5965
7	U	REGD	1.4	0.917	1.090512541	1.2838	95.8803
L	V	REGD	2	0.909	1.100110011	1.818	97.6983
L	W	REGD	27	0.897	1.114827202	24.219	121.9173
5	X	REGD	1.8	0.884	1.131221719	1.5912	123.5085
L	Υ	REGD	0.1	0.868	1.152073733	0.0868	123.5953
)	Z	REGD	0.1	0.826	1.210653753	0.0826	123.6779


Resources with same adjusted total cost share the same BF

Benefits Factor Calculation - Step 4

- Resource specific benefits factor determination
 - ➤ The BF is the intersection on the Y (BF) axis of the corresponding rolling effective MW on the X (percentage RegD) axis
 - > The slope equation is:

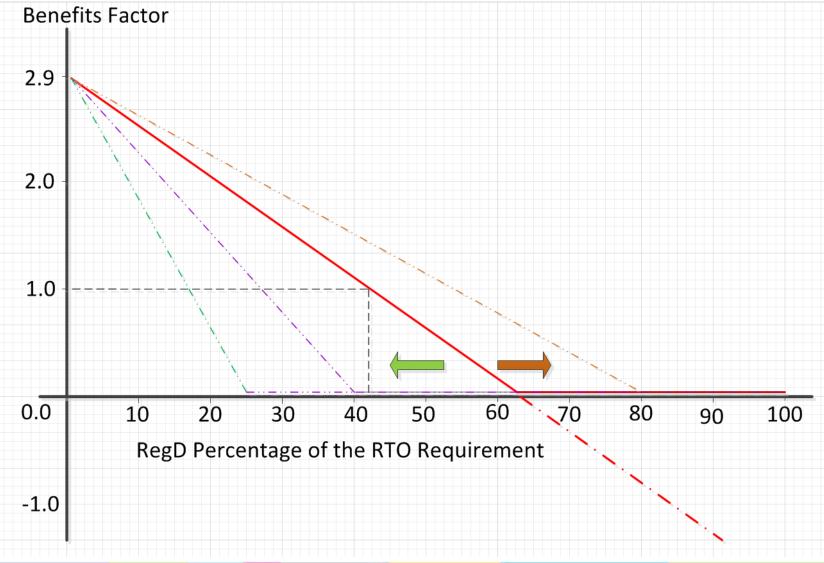
$$BF_i = \frac{EffMW_{i^*}(0.0001-2.9)}{Percentage\ RegD*RegReq} + 2.9$$

Benefits Factor Calculation Step 4 – Numerical Example

_		_	. '////////	_			-
Resources	Туре	Reg Offer MW	PerformanceScore	Adj_Total_Cost	Eff_MW_for_BF	Rolling Effective MW rank asc	Bfactor
Н	REGD	20	0.976	1.024590164	19.52	19.52	2.7684
J	REGD	20	0.946	1.057082452	18.92	38.44	2.6408
K	REGD	1	0.944	1.059322034	0.944	69.12	2.4339
P	REGD	31.5	0.944	1.059322034	29.736	69.12	2.4339
Q	REGD	4	0.939	1.064962726	3.756	72.876	2.4085
R	REGD	20	0.925	1.081081081	18.5	91.376	2.2838
S	REGD	1.5	0.923	1.083423619	1.3845	92.7605	2.2744
T	REGD	2	0.918	1.089324619	1.836	94.5965	2.262
U	REGD	1.4	0.917	1.090512541	1.2838	95.8803	2.2534
V	REGD	2	0.909	1.100110011	1.818	97.6983	2.2411
W	REGD	27	0.897	1.114827202	24.219	121.9173	2.0778
X	REGD	1.8	0.884	1.131221719	1.5912	123.5085	2.0671
Y	REGD	0.1	0.868	1.152073733	0.0868	123.5953	2.0665
Z	REGD	0.1	0.826	1.210653753	0.0826	123.6779	2.0659

www.pjm.com 14 PJM©2015

Understanding Benefits Factor Curve


Effective MW	62% of	
(for BF Calc)	700	MBF
100	434	2.2318
200	434	1.5636
250	434	1.2296
300	434	0.8955
350	434	0.5614
400	434	0.2273
450	434	-0.1068
500	434	-0.4409
550	434	-0.775

- The x-intercept at 62% effective RegD relative to effective requirement
- The curve almost parallel to the xaxis beyond 62%

www.pjm.com 15 PJM©2015

Understanding Benefits Factor Curve – Issue 2

- ➤ The current curve allows for more RegD clearing than the right mix;
- The right mix should be consistent with operation experience with regulation dispatch for ACE control

- Two issues identified
 - Adjusted Total Cost formulation is ineffective in instances of RegD self-scheduled and/or offered at \$0;
 - ❖ Market Clearing Engine is unable to optimally procure RegA/D mix
 - The Benefits Factor curve is not coupled with the regulation requirement
 - More studies will be required to understand the relationship
- Benefits Factor is a modeling concept in Market
 - > It is not used in Operations as part of regulation dispatch
 - > It is not used in Settlement for regulation credit