

DR Availability Window: PJM Solution Options

Pat Bruno Market Design

Market Implementation Committee November 8, 2024

Today's Presentation

- Briefly review PJM solution options presented at October MIC
- Share results of ELCC sensitivity analyses that reflect changes to the DR modeling to incorporate the proposed PJM solution options
- Introduce additional solution option related to DR performance compliance for stakeholder consideration and feedback

Review: PJM Solution Options

Design Component	Status Quo	Solution Option
DR Availability Window	Summer: 10AM-10PM EPT	Extend the current DR performance window to 24 hours and reflect expected reduction capability in all hours in ELCC analysis and other RA studies.
	Winter:	Key Benefits
	6AM-9PM EPT	 Captures the load and curtailment capability of existing DR customers in the risk analysis and accreditation during hours of reliability risk outside the current window
		 Improves incentives to have CSPs sign up customers that are capable of responding during any hour of reliability risk and sets performance expectations for existing / new DR customers to respond at such times
		 Improves parity with generation resources that have 24x7 performance obligations
		Note: This solution option would only be considered in conjunction with other reforms to improve modeling of DR capability in extended winter hours.

Review: PJM Solution Options (cont'd)

Design Component	Status Quo	Solution Option				
DR ICAP: Winter Nominated	Winter Nominated Value = (WPL * ZWWAF – WFSL) * Loss Factor	Modify the WPL calculation to be based on the customer's load during a consistent neak hour across the 5WCP days to				
Value	, ,	address overstated WPL issue.				
	 WPL (Winter Peak Load) based on each customer's peak usage between HE7 through HE21 during 5WCP days ZWWAF (Zonal Winter Weather Adjustment Factor) 	Initially recommending an hour during the morning peak of the winter (i.e. HE9) where we see the highest aggregate load levels of DR customers, most of the winter loss-of-load risk, and most of the recent historical winter coincident peak hours.				
	WFSL (Winter Firm Service Level)	Reconsidering if the use of a weather normalization factor is appropriate for the DR load and Winter Nominated Value calculation.				
		Note: CSPs will still be required to provide PJM 24 hour metered load data during the 5WCP days to inform ELCC load profiles and reduction capability of DR customers in the winter.				

Review: PJM Solution Options (cont'd)

Design Component	Status Quo	Solution Option
ELCC Analysis: Modeling of Hourly DR Availability and Reduction Capability	Hourly DR availability and reduction capability scaled up and down proportional to system load <u>Simulated HourlyLoad_i</u> 50/50 Simulated Peak Load Forecast × ICAP of DR	 Winter: Determine a forecasted level of DR Winter Nominated Value to use in the ELCC analysis. Shape the hourly DR load and reduction capability in the ELCC analysis based on the aggregate hourly load profiles provided in support of WPL values from recent registrations to address the differences observed between system load shape and DR loads. Summer: Status quo (risk concentrated in peak hours during summer; looking to collect additional information in DR registrations in future on summer hourly load profiles during summer peak days)

Winter Example: Forecasted Winter Nominated DR = 8,000 MW, assuming WPL = 8,000 MW and WFSL = 0 for simplicity

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Aaar	egate a	avera	ae hoi	ırlv DF	R load	profil	e (rela	tive to	WPL	in HE	9) dur	ina PJ	IM def	ined 5	winte	er coin	ciden	t peak	davs:				

0.65 0.63 0.63 0.63 0.65 0.72 0.85 0.93 1.0 0.98 0.97 0.95 0.95 0.93 0.92 0.88 0.85 0.85 0.83 0.8 0.77 0.73 0.68 0.65

Aggregate hourly DR reduction capability in winter:

5200 5040 5040 5040 5200 5760 6800 7440 8000 7840 7760 7600 7600 7400 7360 7040 6800 6800 6640 6400 6160 5840 5440 5200

ELCC Sensitivities under Proposed DR Reforms

ELCC Runs	Status quo	Sensitivity 1	Sensitivity 2
ELCC DR Modeling (26/27 BRA)	 DR ICAP = 7954 MW DR reduction capability scaled proportional to system load within performance window DR reduction set to zero outside window 	 DR ICAP = 5705 MW WPL and winter hourly profile / reduction capability based on 24/25 registration data Assumes no change to nominated winter FSL 24/7 performance window 	 DR ICAP = 7954 MW Similar to Sensitivity 1, except winter FSL reduced and Winter Nominated Value scaled up to equal original forecasted DR ICAP
FPR	0.9367	0.9573	0.9577
DR ELCC Rating	74%	92%	94%

Apjm

ELCC Sensitivities with Proposed DR Reforms (cont'd)

ELCC Runs	EUE	LOLH	LOLE
Status quo	W:87% S:13%	W:71% S:29%	W:55% S:45%
Sensitivity 2 (near identical results observed in Sensitivity 1)	W:83% S:17%	W:66% S:34%	W:51% S:49%

- Majority of ratings remain unchanged or move +/- 1% or +/- 2%, largely driven by decrease in winter share of loss of load risk
- After DR, storage classes see largest increase in rating, largely driven by relatively shorter loss of load events observed in the winter compared to status quo

Class	Status Quo	Sensitivity 2	Delta
Onshore Wind	34%	32%	-2%
Offshore Wind	61%	57%	-4%
Solar Fixed	8%	9%	1%
Solar Tracking	13%	14%	1%
Landfill Gas Intermittent	54%	55%	1%
Hydro Intermittent	38%	38%	0%
4-hr Storage	57%	67%	10%
6-hr Storage	65%	76%	11%
8-hr Storage	68%	77%	9%
10-hr Storage	78%	86%	8%
DR	74%	94%	20%
Nuclear	95%	95%	0%
Coal	84%	84%	0%
Gas CC	78%	79%	1%
Gas CT	68%	70%	2%
Gas CT Dual	79%	80%	1%
Diesel Utility	91%	91%	0%
Steam	74%	75%	1%

New Solution Option: DR Compliance Calculations

DR Compliance Calculations: Status Quo

 DR compliance calculations for PAIs and testing currently focus on seasonal peak load values to determine the level of reduction achieved and if that reduction amount meets the committed level

Capacity Load Reduction MW = Seasonal Peak Load – Metered Load (adjusted for losses)

- When DR is dispatched within their performance window during a PAI, Load Reduction MW is compared to committed UCAP to determine if short or eligible for bonus (on an aggregate basis by CSP)
- When DR is dispatched outside the performance window during a PAI, compliance is voluntary and any Load Reduction MW is eligible for bonus

(Note: This would no longer be applicable under the proposed solution option that extends the performance window to be 24/7)

Simple DR Example									
Peak Load	FSL	ICAP	ELCC (%)	UCAP	Committed UCAP				
100	0	100	90%	90	90				

DR performance during PAIs	Hour 1 (peak)	Hour 2 (11pm)
DR Hourly Load Profile	100	80
Peak Load	100	100
Metered Load	0	0
Capacity Load Reduction MW (Actual Performance)	100	100
Committed UCAP	90	-
PAI Compliance MW	+10	+100

DR Compliance Calculations: Observations

- With risk hours and reliance on DR extending beyond just the peak hour in each season, both today and even more so under a 24/7 performance window, the current compliance calculation that focuses on metered load levels relative to seasonal peak loads will tend to overstate the level of reduction value provided
- This can be observed in the following example that assumes DR behavior and risk in the Delivery Year exactly match expectations in the ELCC analysis under a 24/7 performance window, yet DR earns 10 Bonus MW in each hour of the PAIs

Simple DR Example									
Peak Load	FSL	ICAP	ELCC	UCAP	Committed UCAP				
100	0	100	90%	90 MW	90 MW				

ELCC Analysis: Assumes 100 DR ICAP and 2 hours with loss of load risk in model	Hour 1 (peak)	Hour 2 (11pm)
DR Hourly Load Profile in ELCC Analysis	100	80
FSL	0	0
Reduction Amount	100	80
Hourly Risk Weighting (%)	50%	50%
Risk-Weighted Avg. Reduction (i.e. UCAP)		90 MW

DR Performance during PAIs	Hour 1	Hour 2
DR Hourly Load Profile	100	80
Peak Load	100	100
Metered Load	0	0
Reduction MW (PeakLoad - Metered Load)	100	100
Committed UCAP	90	90
PAI Compliance MW	+10	+10
Status Quo Average Hourly Compliance MW		+10

DR Compliance Calculations: New Solution Option

Design Component	Status Quo	Solution Option
DR Compliance Calculation for PAIs and Testing	Summer: Load Reduction MW = PLC – Metered Load	Modify the current compliance calculation to determine bonus or shortfall MW based on if metered load is reduced to above or below the seasonal FSL for which the Demand Resource has committed to reduce to.
	Winter:	DR Compliance MW = Seasonal FSL – Metered Load (adjusted for loss factors)
	Load Reduction MW = WPL * ZWWAF – Metered Load (adjusted for loss factors)	For fully committed Demand Resources, aggregate metered load is compared to the aggregate seasonal FSL of registrations linked to the Demand Resource. For partially committed Demand Resources, compliance is calculated similarly, except seasonal FSL is adjusted up by the uncommitted UCAP on the Demand Resource.
	DR Compliance MW = Load Reduction MW – Committed MW	 Key Benefits More accurately assesses the load reduction value provided by DR during events Provides a load reduction measure that's more consistent with the ELCC analysis and the FSL design in which DR is committing to reduce to a certain level

DR Compliance Calculations: Solution Option - Example 1

Scenario: This scenario continues the 100 MW simplified example from a prior slide where DR behavior and risk hours during the year exactly match expectations in the ELCC analysis, and shows how compliance is determined under the proposed solution where they **reduce to FSL on a fully committed resource.**

Peak Load	FSL	ICAP	ELCC	UCAP	Committed UCAP
100	0	100	90%	90 MW	90 MW

ELCC Analysis: Assumes 100 DR ICAP and 2 hours with loss of load risk in model	Hour 1 (peak)	Hour 2 (11pm)
DR Hourly Load Profile in ELCC Analysis	100	80
FSL	0	0
Reduction Amount	100	80
Hourly Risk Weighting (%)	50%	50%
Risk-Weighted Avg. Reduction (i.e. UCAP)		90 MW

DR Performance during PAIs	Hour 1	Hour 2
DR Hourly Load Profile	100	80
Peak Load	100	100
Metered Load	0	0
Status Quo Reduction MW (Peak Load – Metered Load)	100	100
Committed UCAP	90	90
Status Quo Compliance MW	+10	+10
Status Quo Average Hourly Compliance MW		+10
FSL	0	0
Proposed Compliance MW (FSL – Metered Load)	+0	+0
Proposed Average Hourly Compliance MW		+0

Key Takeaway: PAI compensation is net zero when DR performs exactly as expected during risk hours

Scenario: Same as Example 1 except the Demand Resource provides zero reduction value and underperforms during PAIs in this example.

Peak Load	FSL	ICAP	ELCC	UCAP	Committed UCAP
100	0	100	90%	90 MW	90 MW

ELCC Analysis: Assumes 100 DR ICAP and 2 hours with loss of load risk in model	Hour 1 (peak)	Hour 2 (11pm)
DR Hourly Load Profile in ELCC Analysis	100	80
FSL	0	0
Reduction Amount	100	80
Hourly Risk Weighting (%)	50%	50%
Risk-Weighted Avg. Reduction (i.e. UCAP)		90 MW

DR Compliance Calculations: Solution Option - Example 2

DR Performance during PAIs	Hour 1	Hour 2
DR Hourly Load Profile	100	80
Peak Load	100	100
Metered Load	100	80
Status Quo Reduction MW (Peak Load – Metered Load)	0	20
Committed UCAP	90	90
Status Quo Compliance MW	-90	-70
Status Quo Average Hourly Compliance MW		-80
FSL	0	0
Proposed Compliance MW (FSL – Metered Load)	-100	-80
Proposed Average Hourly Compliance MW		-90

Key Takeaway: PAI shortfall consistent with the zero reduction value provided by the DR where average underperformance equals the full committed UCAP

Scenario: Same as Example 1 except the Demand Resource **has zero capacity commitment, but fully reduces to FSL** for bonus compensation in this example.

Peak Load	FSL	ICAP	ELCC	UCAP	Committed UCAP
100	0	100	90%	90 MW	0 MW

ELCC Analysis: Assumes 100 DR ICAP and 2 hours with loss of load risk in model	Hour 1 (peak)	Hour 2 (11pm)
DR Hourly Load Profile in ELCC Analysis	100	80
FSL	0	0
Reduction Amount	100	80
Hourly Risk Weighting (%)	50%	50%
Risk-Weighted Avg. Reduction (i.e. UCAP)		90 MW

DR Compliance Calculations: Solution Option - Example 3

DR Performance during PAIs	Hour 1	Hour 2
DR Hourly Load Profile	100	80
Peak Load	100	100
Metered Load	0	0
Status Quo Reduction MW (Peak Load – Metered Load)	100	100
Committed UCAP	0	0
Status Quo Compliance MW	+100	+100
Status Quo Average Hourly Compliance MW		+100
FSL (adjusted up by uncommitted UCAP)	90	90
Proposed Compliance MW (FSL – Metered Load)	+90	+90
Proposed Average Hourly Compliance MW		+90

Key Takeaway: PAI bonus matches the average reduction in load provided during PAIs relative to the risk-weighted load levels in ELCC analysis.

Scenario: Same as Example 1 except the Demand Resource has a partial capacity commitment and fully reduces to FSL during PAIs for bonus compensation in this example.

Peak Load	FSL	ICAP	ELCC	UCAP	Committed UCAP
100	0	100	90%	90 MW	60 MW

ELCC Analysis: Assumes 100 DR ICAP and 2 hours with loss of load risk in model	Hour 1 (peak)	Hour 2 (11pm)
DR Hourly Load Profile in ELCC Analysis	100	80
FSL	0	0
Reduction Amount	100	80
Hourly Risk Weighting (%)	50%	50%
Risk-Weighted Avg. Reduction (i.e. UCAP)		90 MW

DR Compliance Calculations: Solution Option - Example 4

DR Performance during PAIs	Hour 1	Hour 2
DR Hourly Load Profile	100	80
Peak Load	100	100
Metered Load	0	0
Status Quo Reduction MW (Peak Load – Metered Load)	100	100
Committed UCAP	60	60
Status Quo Compliance MW	+40	+40
Status Quo Average Hourly Compliance MW	+40	
FSL (adjusted up by uncommitted UCAP)	30	
Proposed Compliance MW (FSL – Metered Load)	+30	
Proposed Average Hourly Compliance MW		+30

Key Takeaway: Level of PAI bonus consistent with reduction value provided beyond committed amount (performed at 100% UCAP value, 2/3 of which was committed and remaining 1/3 is eligible for bonus)

15

Appendix: Reference Materials from Prior Presentations

For Firm Service Level (FSL) customers, Nominated Value and ICAP are based on the difference between customer's Peak Load and FSL in each season

 Summer Nominated Value = PLC – SFSL (adjusted for loss factor) Peak Load Contribution (PLC) = customer's load usage during PJM system 5 summer coincident peak days and hours (EDC-specific calculation) Summer Firm Service Level (SFSL) = pre-defined level for which a customer's load can be reduced to when dispatched in the summer 	Example: PLC = 10 MW SFSL = 0 MW Summer Nominated Value = 10 MW
 Winter Nominated Value = WPL x ZWWAF – WFSL (adjusted for loss factor) Winter Peak Load (WPL) = Average of customer's specific peak hourly load between HE7 through HE21 on the PJM defined 5 coincident peak winter days Zonal Winter Weather Adjustment Factor (ZWWAF) = Weather normalization factor Winter Firm Service Level (SFSL) = pre-defined level for which a customer's load can be reduced to when dispatched in the winter 	Example: WPL = 12 MW ZWWAF = 1.0 WFSL = 0 Winter Nominated Value = 12 MW

Annual ICAP of Demand Resources = lesser of Summer and Winter Nominated Values

Education: Simulated DR Availability in ELCC Model

Demand Resources have performance windows that differ by season

Summer	Winter
10:00AM to 10:00PM EPT	6:00AM to 9:00PM EPT

• In the ELCC analysis, DR availability during hours within the performance window is modeled to be scaled proportional to system load

 $\frac{Simulated HourlyLoad_i}{50/50 Simulated Peak Load Forecast} \times ICAP of DR$

• DR availability during hours outside of the performance window is assumed to be zero

Review: DR Analysis and Observations: Winter Peak Load (WPL)

- Winter Peak Load (WPL) values are used to determine the winter nominated value of DR customers and registrations
- The current WPL calculation uses the average of each customer's specific maximum hourly load between HE7 through HE21 on the five PJM defined winter coincident peak days (5WCP), with limited exception
- When this formula is used for many individual customers, it results in a total WPL that overstates the expected load and corresponding reduction capability of the DR fleet in any one hour, as different customers experience their peak loads at different times of the day
 - This issue is illustrated in the simple example at right
 - Observed in DR registration data for different DYs when comparing aggregate WPL to the total hourly loads of customers during the 5 winter peak days

Example	Custome	er Load (k\	N) during	5 winter p	eak days	
Customer	7AM	8AM	9AM	5PM	6PM	Max
А	500	600	500	500	500	600
В	500	700	1000	400	400	1000
С	500	500	500	1000	900	1000
Total	1500	1800	2000	1900	1800	2600

Total WPL = 2600 kW, while maximum total hourly load is 2000 kW

Review: DR Analysis and Observations: Winter ELCC Modeling vs. Historical Loads

Presented at the Aug. 7 MIC, the figure above compares the estimated reduction capability of DR based on the aggregate hourly metered loads of customers during the 5 winter peak days minus winter FSL (in blue) to the reduction capability used in the ELCC analysis during those same days (in green), as a percentage of winter ICAP for the 2024/25 DY

- The current ELCC heuristic (green line in figure) tends to overestimate the reduction capability of DR during winter hours within the performance window, and would further overestimate reduction value if extended for hours outside the current performance window
- There is a fairly significant amount of load above the WFSL from DR customers today in hours outside the current performance window, such that expanding the window to include those hours could provide substantially more reduction capability and reliability value from DR that is not captured today
- The aggregate hourly load shape of DR customers in the winter tends to have a different shape than the system load (slow decline after the morning peak with no second peak)

Facilitator: Foluso Afelumo, Foluso.Afelumo@pjm.com

Secretary: Stefan Starkov, Stefan.Starkov@pjm.com

SME/Presenter: Pat Bruno, Patrick.Bruno@pjm.com

DR Availability Window – Solution Options

Member Hotline (610) 666-8980 (866) 400-8980 custsvc@pjm.com

