

IPSTF Update

MRC September 15, 2011

PJM©2011

Solution Options – Goals

- Timely completion of studies
- Move projects to an ISA more quickly
- Reduce number of re-tools
- Provide greater certainty in results
- Manage changes associated with projects
- Manage process workload

- Main solution options have focused on three proposals
 - Move to a 6-month queue cycle from the existing 3month cycle
 - Implement process changes to implement "sliding queue"
 - Process changes for 20 MW and below projects
- Other process changes related to treatment of project suspensions and use capacity injection rights of existing units

Solution Options – Queue Cycle

Current Cycle

- 4 3 month Feasibility Study cycles (no delay between cycles for answers)
- 4 4 month System Impact Study cycles (overlapping)
- 8 of 12 months involve due dates for large volumes of studies

Solution Options – Queue Cycle

Problem:

No time to incorporate decisions of earlier queued projects before studies are started

X1 Feasibility Studies are started before the decisions from the W4 queue are made

• Recall <u>87%</u> of projects drop out after the Feasibility Study

W4 Impact Studies are started before decisions from W3 Impact Studies are made

 Recall <u>69%</u> of projects drop out after the Impact Study

Solution Options – Queue Cycle

Proposed Cycle

Feasibility Study Benefits

- Decisions of Y1 queue developers can be incorporated into the Y2 studies providing greater certainty in study results and reduces the need for retools
- Enables the "sliding queue" process

Impact Study Benefits

- Decisions of Y1 queue developers can be incorporated into the Y2 studies providing greater certainty in results and reducing the need for retool
- Enables the "sliding queue" process

Solution Options – Sliding Queues

- Underlying philosophy is that some magnitude of change make the project fundamentally different from original request and, therefore, requires a new queue position
- Parameter changes requiring that project slide to next queue
 - Change of turbine type
 - Change in fuel type
 - Change in equipment manufacturer (turbine, transformer, converter)
 - Others?
- For projects that are not making changes:
 - Greater certainty in their study results
 - Reduces the need for retools and/or number of changes that need to be incorporated into subsequent retools
 - Allows the project to move through the process more quickly (no delay for higher queue projects to make up their mind on parameters)

Solution Options – Sliding Queues

⊅ pjm [™]	Interconn	ection Request Time Line Overview
Queue open (90 days)	Feasibility Study (90 days)	Customer review report and return Impact Study Agreement (30 days)
Customer review report and return Facility Study Agreement (30 days)	Facility Study (6 months)	Customer review report and return ISA (CSA) or UCSA (60 days)
Customer review and return CSA (90 days)	Remaining timeline defined by ISA milestones, CSA/UCSA schedule and rights to suspend	Approximately 1 ½ years from queue entry until ISA tendered (assuming no delays)

Is there a more efficient process for studying and identifying required upgrades for 20 MW and smaller requests?

< 20 MW Projects</p>

- Streamline the study process
 - Develop screening process to determine what requests may not meet cost allocation thresholds
 - Eliminate deliverability, short circuit and stability testing for projects that are screened out above
 - Identify attachment facilities and any lower voltage impacts if applicable
 - Projects could be studied outside of the existing queue
- Simplified queue process
 - Establish priority amongst all 20 MW and smaller projects
- Increase deposit structure to align with what we have typically spent
 - Make unspent deposit monies refundable if development environment changes

- Continue to work through details of process changes
- Tariff language
- MRC and MC approval