

# Shortage Pricing Penalty Factors and the Offer Cap

(Corrected September 9, 2015)

Adam Keech

Senior Director, Market Operations Market Implementation Committee September 9, 2015

#### **Background Information**

- Operating Reserve Demand Curve (ORDC) and Reserve Constraint Penalty Factor Curve (RCPF) interchangeable terms
- The Penalty Factor (PF) is the ycoordinate on the ORDC
- For the curves we use today, the xcoordinate is the reserve requirement for the specific reserve product
  - Primary or Synchronized Reserves
  - RTO or Mid-Atlantic + Dominion
- Four total curves





- .⊅∕pjm
  - The Penalty Factor level:
    - Puts a defined limit on the cost willing to be incurred to substitute reserves for energy
    - Acts as a cap on the market clearing price
  - If the cost for a resource to provide reserves exceeds the willingness to pay for that reserve product, it will not be committed for reserves by the dispatch engine
    - The shortage created by not committing such resources will be consumed by the ORDC
    - PJM Operations would still assign reserves out-of-market if available and the cost of those reserves would be recovered through a make whole payment in the reserve market
  - The penalty factor only explicitly impacts LMPs during shortage conditions.
    - We have had 10 hours of shortage pricing since it was implemented on October 1, 2012.
    - This is about .04% of all hours.

#### Conceptual Discussion: Penalty Factors

- Penalty factors must
  - Permit the full utilization and pricing of all assets necessary to meet energy and reserve needs given the offer cap
  - Not be set artificially low and result in "economic shortages"
    - Results in LMPs that are inconsistent with system conditions
    - Results in unutilized assets to meet system needs
    - Additional manual work by PJM Operators to manually allocate resources
    - May not be done in the most cost-effective manner
  - Not be set artificially high resulting in large and potentially unnecessary swings in LMPs and reserves prices



- A significant portion of the cost of the reserves during extreme system conditions is lost opportunity costs.
  - Lost opportunity costs depend on the offer of the unit providing reserves and the LMP.
  - The LMP depends on the offer price of the marginal unit.
  - As the LMP increases, the potential lost opportunity cost incurred by resources providing reserves will increase.
- The penalty factor must be increased to accommodate the increase in opportunity costs.
- Failure to do this will result in economic shortages.

## **Example Information**

| Generator | Energy Offer<br>(\$/MWh)                 | Total<br>Capacity<br>(MW)                               | Reserve<br>Capability (MW)        |
|-----------|------------------------------------------|---------------------------------------------------------|-----------------------------------|
| А         | \$100                                    | 300                                                     | 80                                |
| В         | \$500                                    | 400                                                     | 100                               |
| С         | \$700 + \$1/MW Output<br>(up to \$1,000) | 400                                                     | 80                                |
| Reserve   | Requirement: 200 MW                      | Penalty Factor for<br>being short reserve:<br>\$850/MWh | Energy Offer Cap =<br>\$1,000/MWh |

**pjm** 



#### Generator C Cost Curve Example

- Generator C has an energy offer of \$700 + \$1/MW
  - Intended to simulate an incremental offer curve rather than a fixed offer like units A & B
  - For example:

| Output (MW) | Calculation                | Offer (\$/MWh) |                |
|-------------|----------------------------|----------------|----------------|
| 10          | \$700 + (10 MW * \$1/MWh)  | \$710/MWh      |                |
| 100         | \$700 + (100 MW * \$1/MWh) | \$800/MWh      | Offer capped   |
| 250         | \$700 + (250 MW * \$1/MWh) | \$950/MWh      | at \$1,000/MWh |
| 300         | \$700 + (300 MW * \$1/MWh) | \$1,000/MWh    |                |
| 350         | \$700 + (300 MW * \$1/MWh) | \$1,000/MWh 🛩  |                |



## Adequate Supply—200 MW Energy Demand

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (LMP)   | \$100                       | 300                    | 80                                          |                         | 200          | 80                       |
| В         | \$500                       | 400                    | 100                                         |                         | 0            | 100                      |
| С         | \$700 +<br>\$1/MW           | 400                    | 80                                          | 0                       |              | 80                       |
| Res       | erve Requirement            | 200 MW                 | Penalty Factor for being short<br>\$850/MWh | reserves:               | Energy Offer | Cap = \$1,000/MWh        |

- Energy price = \$100/MWh, Reserve price = \$0/MWh
  - Gen A sets LMP



## Adequate Supply— 400 MW Energy Demand

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (MCP)   | \$100                       | 300                    | 80                                          |                         | 280          | 20                       |
| B (LMP)   | \$500                       | 400                    | 100                                         |                         | 120          | 100                      |
| С         | \$700 +<br>\$1/MW           | 400                    | 80                                          | 0                       |              | 80                       |
| Res       | erve Requirement:           | : 200 MW               | Penalty Factor for being short<br>\$850/MWh | reserves:               | Energy Offer | Cap = \$1,000/MWh        |

- Energy price = \$500/MWh, Reserve price = \$400/MWh
  - Reserve price set by lost opportunity cost of Gen A, LMP set by Gen B



## Adequate Supply—700 MW Energy Demand

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (MCP)   | \$100                       | 300                    | 80                                          | 280                     |              | 20                       |
| В         | \$500                       | 400                    | 100                                         |                         | 300          | 100                      |
| C (LMP)   | \$700 +<br>\$1/MW           | 400                    | 80                                          | 120                     |              | 80                       |
| Res       | erve Requirement            | 200 MW                 | Penalty Factor for being short<br>\$850/MWh | reserves:               | Energy Offer | Cap = \$1,000/MWh        |

- Energy price = \$820/MWh, Reserve price = \$720/MWh
  - Reserve price set by lost opportunity cost of Gen A, LMP set by Gen C



#### Close to Shortage — 829 MW Energy Demand

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (MCP)   | \$100                       | 300                    | 80                                          |                         | 280          | 20                       |
| В         | \$500                       | 400                    | 100                                         |                         | 300          | 100                      |
| C (LMP)   | \$700 +<br>\$1/MW           | 400                    | 80                                          | 249                     |              | 80                       |
| Res       | erve Requirement            | : 200 MW               | Penalty Factor for being short<br>\$850/MWh | reserves:               | Energy Offer | Cap = \$1,000/MWh        |

- Energy price = \$949/MWh, Reserve price = \$849/MWh
  - Reserve price set by lost opportunity cost of Gen A, LMP set by Gen C

**J**pjm

## Economically Shortage — 840 MW Energy Demand

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (LMP)   | \$100                       | 300                    | 80                                          |                         | 290          | 10                       |
| В         | \$500                       | 400                    | 100                                         |                         | 300          | 100                      |
| С         | \$700 +<br>\$1/MW           | 400                    | 80                                          | 250                     |              | 80                       |
| Res       | erve Requirement            | : 200 MW               | Penalty Factor for being short<br>\$850/MWh | reserves:               | Energy Offer | Cap = \$1,000/MWh        |

- Energy price = \$950/MWh, Reserve price = \$850/MWh
  - Reserve price set by the ORDC, LMP by Gen A + PF



#### What happened?

- The system went short of reserves even though enough capacity was available.
  - 1,100 MW of capacity available, only 1,030 MW used yet the system is "short"
  - Instead of dispatching Gen C for more energy and maintaining reserves, Gen A's reserves are converted to energy causing a shortage because they would cost more than the PF if Gen C set LMP at \$951/MWh
  - PJM operators will manually assign Gen A 20 MW of reserves

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (LMP)   | \$100                       | 300                    | 80                                          |                         | 290          | 10                       |
| В         | \$500                       | 400                    | 100                                         |                         | 300          | 100                      |
| С         | \$700 +<br>\$1/MW           | 400                    | 80                                          |                         | 250          | 80                       |
| Res       | serve Requirement           | : 200 MW               | Penalty Factor for being short<br>\$850/MWh | t reserves:             | Energy Offer | Cap = \$1,000/MWh        |

**J**pjm

## Economically Shortage — 855 MW Energy Demand

| Generator                   | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW)                      | Reserve Capability<br>(MW) | Assigned Energy<br>(MW) |                   | Assigned<br>Reserve (MW) |
|-----------------------------|-----------------------------|---------------------------------------------|----------------------------|-------------------------|-------------------|--------------------------|
| А                           | \$100                       | 300                                         | 80                         |                         | 300               | 0                        |
| В                           | \$500                       | 400                                         | 100                        |                         | 300               | 100                      |
| C (LMP)                     | \$700 +<br>\$1/MW           | 400                                         | 80                         | 255                     |                   | 80                       |
| Reserve Requirement: 200 MW |                             | Penalty Factor for being short<br>\$850/MWh | reserves:                  | Energy Offer            | Cap = \$1,000/MWh |                          |

- Energy price = \$955/MWh, Reserve price = \$850/MWh
  - Reserve price set by the ORDC, LMP by Gen C





۲

- The system is still short reserves.
  - 1,100 MW of capacity available, only 1,035 MW used yet the system is "short"
  - Reserves on Gen A are now fully converted to energy
  - PJM operators must counteract this by manually assigning Gen A 20 MW
  - The system prices indicate a shortage that does not exist
  - Gen A is made whole via reserve uplift

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                  | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|---------------------------------------------|-------------------------|--------------|--------------------------|
| A (LMP)   | \$100                       | 300                    | 80                                          |                         | 300          | 0                        |
| В         | \$500                       | 400                    | 100                                         |                         | 300          | 100                      |
| С         | \$700 +<br>\$1/MW           | 400                    | 80                                          |                         | 255          | 80                       |
| Res       | erve Requirement            | : 200 MW               | Penalty Factor for being short<br>\$850/MWh | reserves:               | Energy Offer | Cap = \$1,000/MWh        |

**J**pjm

## Economically Shortage — 855 MW Energy Demand

| Generator | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                       | Assigned Energy<br>(MW) | Assigned<br>Reserve (MW) |
|-----------|-----------------------------|------------------------|--------------------------------------------------|-------------------------|--------------------------|
| A (MCP)   | \$100                       | 300                    | 80                                               | 280                     | 20                       |
| В         | \$500                       | 400                    | 100                                              | 300                     | 100                      |
| C (LMP)   | \$700 +<br>\$1/MW           | 400                    | 80                                               | 275                     | 80                       |
| Res       | erve Requirement            | : 200 MW               | Penalty Factor for being<br>reserves: \$1,000/MW | short Energy (<br>/h    | Offer Cap = \$1,000/MWh  |

- Energy price = \$975/MWh, Reserve price = \$875/MWh
  - Reserve price set by Unit A, LMP by Unit C





٠

- The system is no longer short reserves.
  - 1,055 MW of 1,100 MW of capacity are utilized
  - No economic shortage
  - Reserves on Gen A are restored
  - PJM operators do not need to intervene
  - The system prices do not indicate a shortage
  - No additional uplift is created

| Generator   | Energy<br>Offer<br>(\$/MWh) | Total<br>Capacity (MW) | Reserve Capability<br>(MW)                                   | Assigned Energy<br>(MW) |              | Assigned<br>Reserve (MW) |
|-------------|-----------------------------|------------------------|--------------------------------------------------------------|-------------------------|--------------|--------------------------|
| A (MCP)     | \$100                       | 300                    | 80                                                           |                         | 280          | 20                       |
| В           | \$500                       | 400                    | 100                                                          |                         | 300          | 100                      |
| C (LMP)     | \$700 +<br>\$1/MW           | 400                    | 80                                                           | 275                     |              | 80                       |
| Res         | erve Requirement            | : 200 MW               | Penalty Factor for being shortEnergy Ofreserves: \$1,000/MWh |                         | Energy Offer | Cap = \$1,000/MWh        |
| www.pim.com |                             |                        | 17                                                           |                         |              | PJM©2015                 |



#### Energy Offer Cap and Penalty Factor Level

- Allowing an increase in the offer cap will result in an increase in opportunity costs for reserve resources when high-priced resources are marginal
- If the offer cap is increased, the reserve penalty factors must follow
- Due to the temporary nature of the waivers, the penalty factors were not previously addressed.
- A permanent solution to the offer cap issue must include penalty factor changes.

| Marginal Energy<br>Offer (\$/MWh) | Reserve<br>Resource Offer<br>(\$/MWh) | Lost Opportunity<br>Cost (\$/MWh) |
|-----------------------------------|---------------------------------------|-----------------------------------|
| \$500                             | \$100                                 | \$400                             |
| \$1,000                           | \$100                                 | \$900                             |
| \$1,500                           | \$100                                 | \$1,400                           |
| \$2,000                           | \$100                                 | \$1,900                           |