

Summary of Generator Deliverability Test Modifications at the PC: Light Load, Summer & Winter

Purpose of PC Discussions

- Consider the evolving resource mix in PJM's planning process
 - In the RTEP Baseline Studies
 - In the Interconnection Studies
- Support operational flexibility
- Incorporate other miscellaneous improvements to the existing light load and winter generator deliverability tests

- At the PC, PJM will be proposing modifications to each of the generator deliverability tests*.
 - Procedures have been relatively unchanged for many years.
 - Multiple reasons for an update including the need to better account for expected higher variability in dispatches under increased renewable penetration.
- Efforts to improve voltage testing to better account for operational concerns will be pursued separately.

* https://www.pjm.com/-/media/committees-groups/committees/pc/2021/20211005/20211005-item-09a-generator-deliverability-test-modifications-manual-14a-14b-update.ashx

- The proposed changes to the generator deliverability test will use a few terms and concepts that warrant a brief overview.
- <u>Deliverability Requirement</u>: The ability of the transmission system to support the delivery to load of a specified MW injection at a location.
 - A prerequisite to the award of CIRs
 - Applicable to individual Capacity Resources, e.g. the deliverability requirements of a new queue unit
 - Also applicable to combinations of Capacity Resources, e.g. the deliverability requirements of all reasonably expected combinations of CIRs
 - Applicable to summer, winter and light load generator deliverability testing

New Concepts

- <u>Percentiles:</u> Represent the percentage of output hours with output levels below a particular output level.
- Example: if the P90% (90th percentile) of onshore wind outputs is 40% of nameplate, this means that 90% of the time onshore wind is producing less than 40% of nameplate.

Percentile Example: Frequency Of Wind Output

New Concepts

- <u>Block Dispatch</u>: Groups resource types into three distinct categories based on economic considerations with block 1 containing the units expected to have the lowest offer prices and block 3 to have the highest. Each block will be dispatched as a whole and block 1 will be dispatched first, then block 2 and 3 as needed
 - Block 1: Nuclear, wind, solar, hydro, pumped storage, other renewables
 - Block 2: Coal, combined cycle gas
 - Block 3: IC/CT/ST oil and gas

New Concepts

- <u>Energy-only MW</u>: The MW capability of a generator or of a Merchant Transmission Facility (MTF) that is not examined as part of the generator deliverability test. A facility's energyonly MW may be different for each season.
 - Example 1: A 100 MW gas unit requests 80 MW CIRs. The unit therefore has 20 MW of energyonly MW.
 - Example 2: A 100 MW MTF has 80 MW of firm transmission. The MTF therefore has 20 MW of energy-only MW.
 - Example 3: A 100 MW wind farm has a summer deliverability requirement of 40 MW. The unit therefore has 60 MW of summer energy-only MW.
 - Example 4: A 100 MW solar farm has a winter deliverability requirement of 5 MW. The unit therefore has 95 MW of winter energy-only MW.
- While energy-only MW will not be considered in the generator deliverability testing, they will be examined as part of a new Individual Plant Deliverability test to ensure the maximum output capability of each generating plant and MTF is deliverable by itself in each season.

Summary of Changes

- Merged summer, winter and light load generator deliverability testing methods
- Harmonized dispatch procedures for all three RTEP base cases
 - Added new block dispatch approach to dispatch cases. No LDA allowed to import more than CETO in base case to ensure a realistic dispatch.
 - Only firm interchange modeled in base cases with separate procedures for performing sensitivities on historical interchange using simplified approach
- Redefined light load period to include any nighttime <u>and</u> daytime hours between 40-60% annual peak load
 - Established 59 deg F as default light load temperature rating set
 - Ramping procedures more consistent with summer and winter, i.e., ramp nuclear, coal, combined cycle and all renewables

- Established new deliverability requirements
 - Better account for volatility of wind and solar by using P80%-P90% for Harmers and P20% for Helpers
 - Removed all ramping caps except PGEN*EEFORd, which will be an overall ramping cap and even apply to the 50/50 generators
 - Single contingency and common mode outage testing is now identical no more 80/20, only 50/50
 - Energy-only portion of units not studied in generator deliverability but as part of new Individual Plant Deliverability test
 - MISO wind considered in both light load and winter tests and option to consider other RTO renewables in the future
- Facility Loading Adders modelled at base case setting for resource type instead of 85%
- Remove EEFORd for plants < 50 MW

- **"**pjm"
 - Compare potential reliability violations under status quo and under proposed generator deliverability procedures
 - 2026 RTEP Light Load
 - 2026 RTEP Winter
 - 2026 RTEP Summer
 - Expect to share test results at 11/2/2021 Regular PC Session

Interconnection Queue Testing

- AG1 Queue 2024 RTEP Light Load & Summer With Commercial Probabilities
 - Status Quo Rules
 - Proposed Rules
- Expect to share results at the 11/30 Regular PC

APPENDIX

Winter & Light Load Capacity Factors For Solar & Wind

MAAC	Summer CF**	LL CF	Winter CF		
Solar Fixed	47%	12%	5%*		
Solar Tracking	64%	16%	5%*		
Onshore Wind	16%	31%	40%		
Offshore Wind	38%	49%	55%		

PJM West	Summer CF**	LL CF	Winter CF
Solar Fixed	54%	13%	5%*
Solar Tracking	65%	14%	5%*
Onshore Wind	19%	35%	43%
Offshore Wind	N/A	N/A	N/A

DOM	Summer CF**	LL CF	Winter CF	
Solar Fixed	55%	14%	5%*	
Solar Tracking	66%	16%	5%*	
Onshore Wind	20%	34%	41%	
Offshore Wind	33%	52%	57%	

* No change from status quo assumptions

****** Only used for Facility Load Adders and CIRs are used to set base dispatch

Proposed Default Deliverability Requirements For Wind & Solar As % Nameplate

MAAC	Summer P80%	Summer P90%	Winter P80%	Winter P90%	LL P80%	LL P90%
Solar Fixed	67%	N/A	5%*	N/A	23%	N/A
Solar Tracking	89%	N/A	5%*	N/A	33%	N/A
Onshore Wind	N/A	38%	N/A	73%	N/A	66%
Offshore Wind	73%	N/A	96%	N/A	92%	N/A

PJM West	Summer P80%	Summer P90%	Winter P80%	Winter P90%	LL P80%	LL P90%
Solar Fixed	76%	N/A	5%*	N/A	22%	N/A
Solar Tracking	84%	N/A	5%*	N/A	29%	N/A
Onshore Wind	N/A	52%	N/A	84%	N/A	77%
Offshore Wind	N/A	N/A	N/A	N/A	N/A	N/A

DOM	Summer P80%	Summer P90%	Winter P80%	Winter P90%	LL P80%	LL P90%
Solar Fixed	77%	N/A	5%*	N/A	29%	N/A
Solar Tracking	85%	N/A	5%*	N/A	38%	N/A
Onshore Wind	N/A	45%	N/A	78%	N/A	70%
Offshore Wind	68%	N/A	98%	N/A	95%	N/A

* No generator ramping requirements

Proposed Availability Under Stressed Conditions For Wind & Solar As % Nameplate

MAAC	Summer P _{20%}	Winter P20%	LL P20%
Solar Fixed	28%	0%	0%
Solar Tracking	38%	0%	0%
Onshore Wind	0%	15%	8%
Offshore Wind	0%	13%	9%

PJM West	Summer P _{20%}	Winter P _{20%}	LL P _{20%}
Solar Fixed	33%	0%	0%
Solar Tracking	43%	0%	0%
Onshore Wind	0%	13%	9%
Offshore Wind	N/A	N/A	N/A

DOM	Summer P _{20%}	Winter P _{20%}	LL P _{20%}
Solar Fixed	35%	0%	0%
Solar Tracking	48%	0%	0%
Onshore Wind	0%	17%	11%
Offshore Wind	0%	13%	9%