

Transmission Planning Reliability Analysis Update

Sami Abdulsalam, Senior Manager

Transmission Expansion Advisory Committee March 7, 2023

Topics Covered

- 2022 RTEP Window 3
- 2023 RTEP Window 1

2022 RTEP Window 3

Window Opened; February 24th 2023

- PJM posted preliminary planning basecases on January 31st 2023
- 60 Day Window Closing April 25th 2023

• Purpose:

- Address reliability needs in the Dominion and APS zones primarily associated with Data Center Load forecasts (up to 7,500 MWs by 2027-28)
- Seeking robust and flexible solutions to address the reliability needs in those specific areas

2022 RTEP Window 3 Criterion Applied by PJM

- 2027-28 Summer / Winter
 - 2027-28 Summer
 - Baseline Thermal and Voltage N-1 Contingency Analysis
 - Generator Deliverability and Common Mode Reliability Analysis
 - N-1-1 Thermal and Voltage Analysis and Voltage Collapse
 - Load Deliverability Thermal and Voltage Analysis
 - Dynamic Stability Assessment
- 2027-28 Light Load*
 - Baseline Thermal and Voltage N-1 Contingency Analysis
 - Generator Deliverability and Common Mode Reliability Analysis
 - *PJM aims to provide the Light Load cases early in March 2023, on or before March 6th

2022 Window 3 - Flowgates Exclusions

- Immediate Need Exclusion
- Below 200kV Exclusion
- Substation Equipment Exclusion
- Supplemental Projects scope
- Areas external to the study area that will be covered part of upcoming 2023 RTEP

2022 RTEP Window 3 - Objective

- Develop robust, holistic and expandable solutions that address the 2027-28 baseline violations associated with:
 - Local constraints: resulting from directly serving the data center loads in APS and Dominion zones through the respective 230 kV networks and into the points of delivery:
 - Goose Creek- Ashburn Mars Wishing Star and Brambleton
 - Regional constraints resulting from imports into load center areas (500 kV primarily):
 - Doubs Goose Creek
 - Front Royal Morrisville Vint Hill Loudoun/Mosby
 - Meadow Brook Loudoun/Mosby
 - Morrisville Bristers Ox
 - Peach Bottom Conastone Brighton Doubs
 - Needed reactive power VAR reinforcements, both static and dynamic as deemed necessary, to address the reactive power needs of the system for the 2027-28 baseline scenario

2022 RTEP Window 3 - Objective

- Develop solutions to address all (if any) new criteria violations generated as a consequence of proposed solution. Solutions to these secondary violations are required for the proposal to be considered.
- Adhere to all applicable planning criteria, including PJM, NERC, SERC, RFC and Local Transmission Owner Criteria.

2022 RTEP Window 3 - Requirements

- Holistic solutions are to be designed such that they are robust and expandable as the load grows within the area.
- A scalable solution ensures, at a minimum, near-term reliability needs are addressed while also enabling future expansion (beyond the 2027-28 baseline levels) as data center load increases in the Dominion and APS zones.
 - Consider flexibility, robustness and scalability of 2027-28-baseline solutions against the Interim 2027-28 Summer, Winter and Light Load basecases.
 - Evaluate proposals for their effectiveness towards existing reactive interfaces in the area, particularly those supporting the Dominion and APS zones.
 - Evaluate the effectiveness of the proposed solutions towards the transmission system load deliverability into the Dominion and APS zones (CETL).

2022 RTEP Window 3 – Regional/Transfer Needs

2022 RTEP Window 3 – Regional/Transfer Needs

2022 RTEP Window 3 – Local / Regional Needs

2022 RTEP Window 3 – Assumptions 1/3

Preliminary Reactive Support:

- The provided 2027-28 basecases include a set of reactive VAR support at existing/proposed substations to partially meet the system reactive load demand particularly under system normal, N-0 conditions.
- Already included at specific locations as indicated in PJM's 2022 RTEP Window 3 Problem Statement document.
- They do not imply final VAR level, type or location.
 - Only adequate for need analysis purposes.
 - Should be removed and replaced consistent with an entity's proposal to provide the necessary VAR support.
- PJM expects that proposals will provide for the needed reactive VAR support through either transmission development or static/dynamic VAR support devices or a combination of both.
- A number of non-convergent contingencies due to deficient VAR support and excessive reactive power loss in the 2027-28 modeling basecases.
- Based on the preliminary VAR resource assumptions in the cases, the provided voltage performance results are for guiding purposes only.
 - Proposal developers are to re-evaluate the voltage performance part of their proposal development to ensure compliance with voltage performance requirements.

2022 RTEP Window 3 – Assumptions 2/3

- Basecase N-0 thermal Violations:
 - 2027-28 baseline case(s) show thermal violations along the Peach Bottom-Conastone and Conastone-Brighton 500kV paths.
 - These 500 kV segments are also showing marginal overloads approaching 98% to 100% under N-1 conditions for the baseline summer conditions.
- Non-Converged N-1 Contingencies:
 - Key contingencies lead to voltage collapse on the 500kV system due to insufficient transmission system transfer capability and VAR support inadequacy.
 - Following development of VAR support enhancements, thermal loading on all system elements needs to be monitored and overloads, if any, need to be addressed part of the proposed solutions.

2022 RTEP Window 3 – Assumptions 3/3

• N-1-1 Analysis;

- Due to the significant load growth presented in the baseline 2027-28 basecases, a large number of N-1-1 contingencies lead to unsolvable security constraint redispatch conditions.
- Hence, the provided N-1-1 results are to be revaluated as part of the proposal solution development process.
- PJM aims provide the interim 2027-28 basecase N-1-1 results by early March and no later than March 6th 2023 on the PJM website in the competitive planning section.
- Load Deliverability analysis:
 - PJM requires the proposed solutions are evaluated for their effectiveness towards load deliverability into the APS and Dominion zones.
 - PJM will provide the load deliverability modeling instructions and parameters during the week of March 6th.

2022 RTEP Window 3 - Transfer Needs

• Non Converging Contingencies (Voltage Stability)

Contingency Name	Cont. Type	Analysis Type	Error Type
AP_P1-2_PE-500-001_SRT-SL	Single	Voltage Drop	Blown Up
AP_P1-2_WP-500-DRT17_SRT-SL	Single	Voltage Drop	Blown Up
PJM_500_BG_P1_5011_SRT-A	Single	Voltage Drop	Blown Up
AP_P2-3_PE-500-015_SRT-A	Line_FB	Voltage Drop	Blown Up
AP_P2-3_PE-500-016_SRT-SL	Line_FB	Voltage Drop	Blown Up
AP_P2-3_PE-500-018C_SRT-SL	Line_FB	Voltage Drop	Blown Up
AP_P2-3_PE-500-018D_SRT-SL	Line_FB	Voltage Drop	Blown Up
AP_P2-3_PE-500-019D_SRT-SL	Line_FB	Voltage Drop	Blown Up

Facilitator: Sue Glatz, <u>Suzanne.Glatz@pjm.com</u>

Secretary: Tarik Bensala, Tarik <u>Bensala@pjm.com</u>

SME/Presenter: Sami Abdulsalam, <u>Sami.Abdulsalam@pjm.com</u>

Reliability Analysis Update

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

