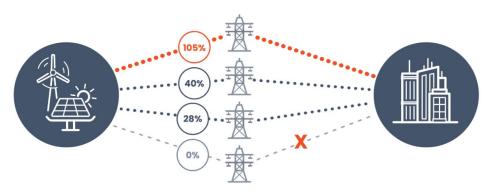
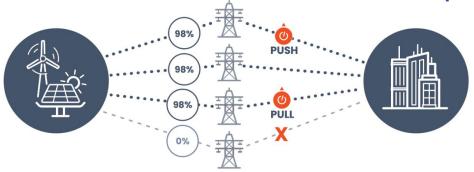
SMART WIRES

Optimizing Transmission Grids with Advanced Power Flow Control (APFC)

Ted Bloch-Rubin



Advanced power flow control (APFC) overview


SmartValve™ Modular SSSC

- Transformerless, series-connected FACTS device that employs Voltage Source Converter technology
- Capable of controlling line reactance in real-time
- Modular design for flexible and scalable installations
- Voltage agnostic and redeployable
- Quick to deliver and deploy
- Integrated fast-acting bypass
- High reliability and redundancy

Before SmartValve™

+75% in firm transmission capacity

After SmartValve™

Long-term planning solutions delivering value globally

North America

Multiple projects using previous and current generation technology to accelerate interconnection of renewables. In just one of the projects, over 185 MW capacity is unlocked.

nationalgrid

Latin America

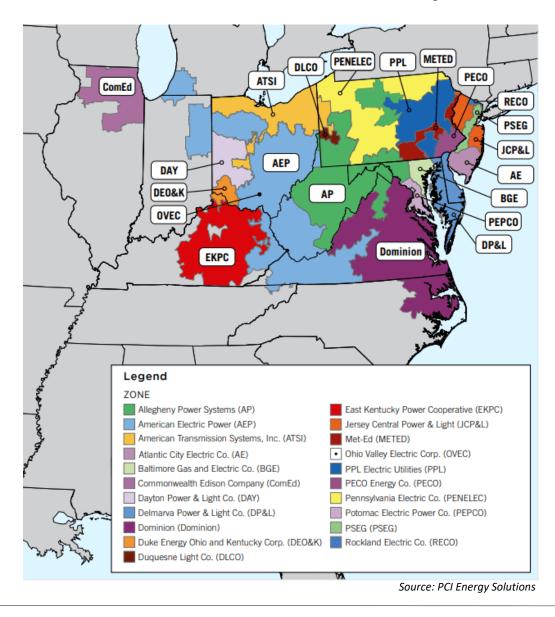
Multiple projects, unlocking over 1.2 GW capacity to support the renewable energy transition, reducing need for infrastructure in urban areas and lowering consumer costs.

Multiple projects, unlocking over 2 **GW** capacity to enable greater power flows across the grid and avoid curtailment of renewables.

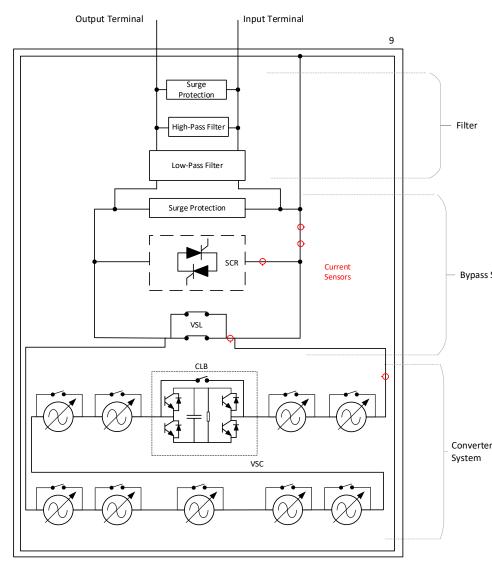
national grid into

Australia

Multiple projects delivered and in progress, unlocking over 185 MW capacity and improving transfer of electricity between states.



APFC solution development in PJM footprint to-date


IL – Generation interconnection, thermal and voltage stability applications

OH – Load interconnection

MD/DE – Offshore wind interconnection network upgrades

VA – Load interconnection, congestion mitigation

SmartValve single line diagram

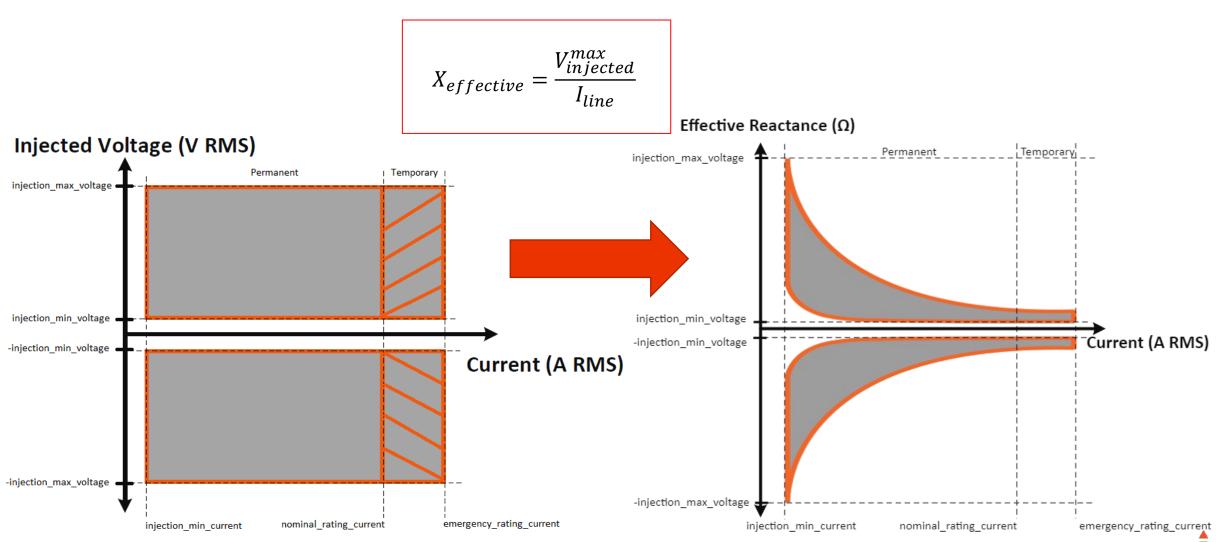
SmartValve harvests all power from the line to operate the control and communication circuits and senses line current for control and fault-protection purposes.

Filter Capabilities

- The high-pass filter allows the passage of high frequency transients.
- The low-pass filters allow the power line frequency to enter the SmartValve.

Bypass Capabilities

- The vacuum switch links (VSLs) primarily conduct current during steadystate conditions.
- The silicon-controlled rectifiers (SCRs) primarily conduct current during grid faults (e.g. a fault on the line connected to the SmartValve).


Converter Capabilities

• The core components of each Voltage-Sourced Converter (VSC) are four semiconductor switches and the DC Link capacitor.

SmartValve 10-1800 Single-Line Diagram

SmartValve (M-SSSC) Operating Range

The V-I characteristic can be 'translated' into a X-I one

SmartValve: Control Modes – Fleet Management

Monitoring

SmartValve devices are bypassed and can report line current measurements and other telemetry data.

Reactance Mode

Constant reactance setpoint either **inductive** or **capacitive**. Injected voltage will vary depending on the line current variation to obtain the required fixed reactance.

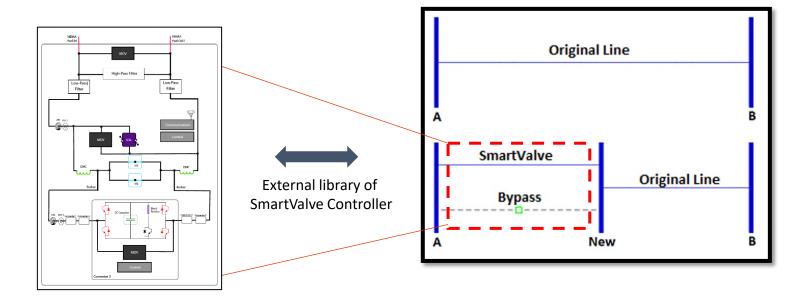
Current Control Mode

This mode **regulates line current** within a tunable operating range. SmartValve device can increase or decrease injection in order to keep line current within the allowed limits.

Modelling SmartValve in power system planning

STUDY SERVICES

- Steady State Studies
- Economic Analysis
- Dynamic Time Domain Studies
- EMT Studies
- Additional Studies
- Customer Defined Analysis

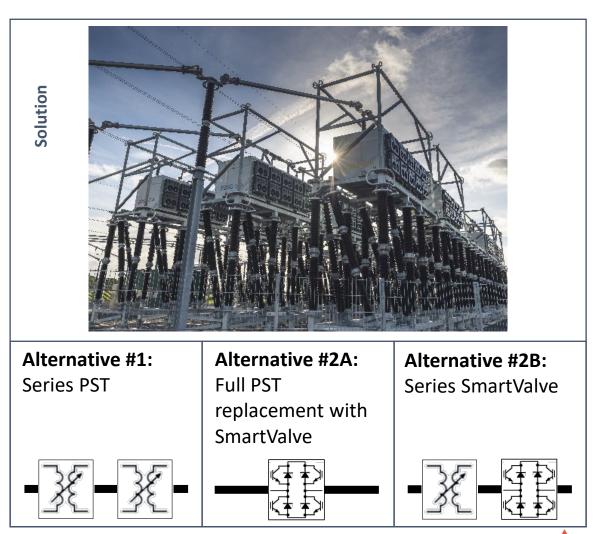

SMARTVALVE™ MODELS

- PowerFactory*
- INTEGRAL*
- Organon*
- ASPEN
- MATLAB® / Simulink®
- PSCAD™/ EMTDC

- PSLF
- PSS®E
- RSCAD/RTDS
- TSAT
- PowerWorld
- NEPLAN

Collaborated with planning software vendors and utilities to codevelop modular SSSC models for PowerFactory, INTEGRAL and Organon, and developed user-defined models for other planning platforms.

PSS/E Steady-State Model



- SmartValve deployment is modeled as two components:
 - Bypass: low-impedance branch (almost equal to 0 Ohms)
 - SmartValve: dedicated branch with reactance dependent on SmartValve injection
- SmartValve deployment and operations parameters are stored in separate files
- SmartValve Control Modes: Current, Voltage, Reactance

Extending the asset life of a PST in Vermont

VELCO

SmatValve directly support data center connection

US utility

Project due to be contracted in Q4 2024 and commissioned in Q3 2025

- New data center connection in urban area increased power delivery requirement
- New HVDC circuits will be required in the long-term, but the utility also needs a quick solution to meet the near-term need

Technology

- SmartValve can push power off the overloaded circuits onto underutilized lines in the neighboring network
- The solution addressed the primary constraints by mitigating thermal overloads up to 34% above the transmission line rating

Why SmartValve?

- SmartValve solution can be put in place in 12 15 months while new HVDC circuits are being permitted and constructed
- This modular solution can be easily expanded to meet further growth in the area ahead of HVDC completion

