

2022 Preliminary PJM Load Forecast

Load Analysis Subcommittee December 6, 2021

Andrew Gledhill Sr. Analyst Resource Adequacy Planning

Model Parameters

- Estimation Period: January 2012 through August 2021
- Weather Simulation: 1994 to 2020 (351 scenarios)
- Sector Models (1998-2020 Annual Data from EIA 861)
 - End Use Data: Based on Itron's 2021 release
 - Economics: September 2021 vintage from Moody's Analytics
- IHS Solar/Battery Forecast (zonal & peak allocation by PJM)
 - Production estimates by AWS
- PEVs
 - State targets and EIA 2021 AEO sales for non-target states
- Forecast Adjustments APS, ATSI, COMED, Dominion

- History has been influenced by COVID-19. This impacts:
 - Sector results
 - Non-weather sensitive load results
- Variable introduced to the model "The Back-to-Normal Index"
 - <u>https://www.cnn.com/business/us-economic-recovery-</u> <u>coronavirus</u>
 - Allows model to calibrate to COVID-19 historical impacts that are not captured by sector or non-weather sensitive load

Sectors, Use Indexes, and Non-Weather Sensitive Load

- Sector model results are influenced by two factors
 - Economics
 - Residential Households, Personal Income, Population per household
 - Commercial Employment, Population, Output
 - Industrial Output
 - End-use (saturation/efficiency/intensity)
 - Residential
 - Commercial
 - Industrial

 Efficiency gains take away more than half of anticipated growth.

Cool Index

- Economic trend is not substantively different.
- New end-use forecast has slightly more efficiency than the past forecast.

 Efficiency gains take away all of the growth. No push towards electrification.

Heat Index

- Economic trend is not substantively different.
- New end-use forecast has slightly less efficiency than the past forecast.

Apjm

Non-Weather Sensitive Load

- Efficiency gains take away more than half of the growth.
- Economic growth is modestly stronger.
- New end-use forecast has slightly more efficiency to past forecast.

Plug-in Electric Vehicles

District of Columbia	25% of registrations by 2035
Illinois	1 Million EVs by 2030
Maryland	300k EVs by 2025
New Jersey	2 million EVs by 2035; 85% of sales in 2040
Virginia	8% of sales in 2024; 22% in 2025

PEV Forecast Method

- In states with targets, the target drives the forecast
- States without targets are pushed forward based on EIA 2021 AEO
 - Assumption of 4% of vehicle sales being EVs by 2030 and 8% by 2040

PJM Total Number of EVs

- Assumptions
 - Future charging shifts increasingly towards off-peak on weekdays.
 - Winter charging needs are greater than in Summer.
 - Key resource on charging:
 - ISO New England
 - <u>https://www.iso-ne.com/static-</u> <u>assets/documents/2021/04/final_2021_transp_elec_forecast.pdf</u>

pjm °															PEV Seasonal Impact												
-										Ρ	ea	k Ir	npa	act	(M)	W)											
3500			_	-Sı	umm	ner	Pea	ak Ir	npa	ct				1													
3000	_		-	-W	inte	r Pe	eak	Imp	act				2														
2500																											/
2000																											
1500																											
1000																											
500																											
0																											
_	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037

Forecast Adjustments

Forecast Adjustments

- EDCs are encouraged to provide PJM with information about large changes that may not be captured in the forecast process.
- PJM evaluates and incorporates using the sector models. We view requests through the lens of:
 - Is the request significant?
 - Is there risk of double counting?
 - Is the trend likely captured in the economic forecast?
 - Can the trend be removed from the history?

- Remove impact of adjustment on history
 - If decrementing load, increase load with historical effects
 - If increasing load, reduce load with historical effects
- Restore impact of adjustment to forecast
 - If decrementing load, reduce forecast with anticipated effects
 - If increasing load, add to forecast with anticipated effects
- "Adjustment Impact" is calculated by comparing with a forecast as if there were no explicit treatment.

Preliminary Forecast

Jpjm

Summer Forecast Comparison 2021 vs 2022

- 15-year Annualized Growth Rate
 - 2021 LF: 0.2%
 - 2022 Prelim: 0.4%
- Select year comparisons (2022 Prelim vs 2021LF)
 - 2025: Down 0.5%
 - 2027: Down 0.1%
 - 2036: Up 1.5%

Recall chart from Nov 9 LAS - Summer Peak Forecast

- New model alone leads to lower growth.
- "Test Forecast" is a representation of what the forecast would have been had we been using the new model for the 2021 Forecast.
- The change is in some of the exogenous assumptions.

Impact of Incremental Data Centers and PEVs

- Without new data centers and new PEVs, 15-year average annual growth would be a scant 0.05%.
- Additional data centers add 0.25% per year to growth.
- Additional PEVs add 0.1% per year to growth.

Building to a Summer Peak Forecast – Part I

- "Add Economic/Use Growth" includes no future efficiency gains or future solar
- PEV and Data Centers contribution shown here is only additions beyond 2021.

 $\times 99^{\circ} 20^{\circ} 20^{\circ$

2022 Load Forecast used weather simulation of 1994-2020 to construct distribution compared with 1993-2019 in 2021 Load Forecast.

50/50 Forecast = 1.0

Winter Forecast Comparison 2021 vs 2022

- 15-year Annualized Growth Rate
 - 2021 LF: 0.2%
 - 2022 Prelim: 0.6%
- Select year comparisons (2022 Prelim vs 2021LF)
 - 2025: Up 2%
 - 2027: Up 2.7%
 - 2035: Up 6%

Building to a Winter Peak Forecast – Part I

- "Add Economic/Use Growth" includes no future efficiency gains or future solar
- PEV and Data Centers contribution shown here is only additions beyond 2021.

Winter Peak Distribution Comparison 50/50 Forecast = 1.0

2022 Load Forecast used weather simulation of 1994-2020 to construct distribution compared with 1993-2019 in 2021 Load Forecast.

Areas of Focus in 2022

- Transition to hourly framework
- Continue development on forecast assumptions
 - Electric Vehicles
 - Storage
- Review/implement consultant recommendations
 - Modeled forecast
 - EVs, Solar/Storage, Load Management

- Review with Planning Committee (12/14/2021)
- Publish final report in late December
 - Accompanying spreadsheets
 - Unrestricted Loads
 - Model Details Spreadsheets
 - End-Use Indices
 - Weather Variables
 - Statistical Appendix
 - Load Report Supplement

SME/Presenter: Andrew Gledhill, Andrew.Gledhill@pjm.com Load_Analysis_Team@pjm.com

2022 Preliminary Load Forecast

