Flexible Ramping Products: An Introduction

Mort Webster Pennsylvania State University

PJM Reserve Certainty Senior Task Force

October 16, 2024

Overview of This Presentation

- Problem Statement
 - Why do we need this?
- Ramp Products:
 - How they work
 - Why they work
 - Design / Implementation choices
- Discussion: Potential future ramp product designs

Features of PJM's Real-Time Markets

- Day-Ahead Market clears the previous day
 - The RAC^{*} is performed just before the start of the operating day
- Real-Time Markets are cleared in a rolling horizon
 - Real-Time Unit Commitment* (IT-SCED)
 - Solved 30 minutes prior to target interval
 - 2-hour lookahead horizon
 - Results inform decisions to start-up more (Fast-Start) units
 - Real-Time Economic Dispatch (RT-SCED)
 - Solved 10 minutes prior to target interval
 - Single-interval dispatch (no lookahead)

* Advisory for operators

4

7

Why a Need for "Ramping Capability"?

- **1. Single-interval economic dispatch** Does not consider ramping capability beyond the target interval
- 2. Variability

5-minute changes in net load may be larger than IT-SCED, DA forecasts

3. Forecast error

The real-time load, wind, solar, and interchange may deviate from the 10-minute and 30-minute ahead forecasts

Illustrative Example: Single Interval Dispatch

Time 0

G2

Load = 350 MW

Adapted from materials by Dane Schiro, ISO-NE

G2

120

200

10

Illustrative Example: Single Interval Dispatch

	G1	G2
ECOMIN	120	120
ECOMAX	200	200
Ramp Limit (5-min)	5	10
Marginal Cost	\$30/MWh	\$50/MWh

Illustrative Example: Single Interval Dispatch

	G1	G2
ECOMIN	120	120
ECOMAX	200	200
Ramp Limit (5-min)	5	10
Marginal Cost	\$30/MWh	\$50/MWh

5 MW Unserved Energy

Illustrative Example: With Ramp Product

	G1	G2
ECOMIN	120	120
ECOMAX	200	200
Ramp Limit (5-min)	5	10
Marginal Cost	\$30/MWh	\$50/MWh

Assume System Requirement: 15 MW of Up Ramp Capability

Load = 350 MW

Illustrative Example: With Ramp Product

	G1	G2
ECOMIN	120	120
ECOMAX	200	200
Ramp Limit (5-min)	5	10
Marginal Cost	\$30/MWh	\$50/MWh

Assume System Requirement: 15 MW of Up Ramp Capability

Illustrative Example: With Ramp Product

	G1	G2
ECOMIN	120	120
ECOMAX	200	200
Ramp Limit (5-min)	5	10
Marginal Cost	\$30/MWh	\$50/MWh

Assume System Requirement: 15 MW of Up Ramp Capability

All load is served at Time 5!

Why a Need for "Ramping Capability"?

Single-interval economic dispatch
 Does not consider ramping capability beyond the target interval

2. Variability

5-minute changes in net load may be larger than IT-SCED, DA forecasts

3. Forecast error

The real-time load, wind, solar, and interchange may deviate from the 10-minute and 30-minute ahead forecasts

Load = 200 MW

Why a Need for "Ramping Capability"?

- Single-interval economic dispatch
 Does not consider ramping capability beyond the target interval
- 2. Variability

5-minute changes in net load may be larger than IT-SCED, DA forecasts

3. Forecast error

The real-time load, wind, solar, and interchange may deviate from the 10-minute and 30-minute ahead forecasts

What is the Objective for any Proposed Solution?

The mix of resources online and their dispatch should:

- Meet load and other reserve requirements in all 5-min. intervals
- Avoid "ramp scarcity" events
- Have sufficient flexibility to:
 - Meet upcoming net load changes beyond the target interval
 - Adjust to any short-term fluctuations in net load
 - Adjust to any forecast uncertainty

- Multi-Interval Economic Dispatch
 - RT-SCED with lookahead window
 - Currently in use in NYISO and CAISO
 - Does not address forecast uncertainty

- Multi-Interval Economic Dispatch
 - RT-SCED with lookahead window
 - Currently in use in NYISO and CAISO
 - Does not address forecast uncertainty
- Stochastic unit commitment and/or dispatch
 - Plans for upcoming intervals
 - Addresses uncertainty
 - Implementation challenges

- Multi-Interval Economic Dispatch
 - RT-SCED with lookahead window
 - Currently in use in NYISO and CAISO
 - Does not address forecast uncertainty
- Stochastic unit commitment and/or dispatch
 - Plans for upcoming intervals
 - Addresses uncertainty
 - Implementation challenges
- Flexible Ramping Reserve Product
 - Can be implemented within single interval dispatch

- Multi-Interval Economic Dispatch
 - RT-SCED with lookahead window
 - Currently in use in NYISO and CAISO
 - Does not address forecast uncertainty
- Stochastic unit commitment and/or dispatch
 - Plans for upcoming intervals
 - Addresses uncertainty
 - Implementation challenges

• Flexible Ramping Reserve Product

• Can be implemented within single interval dispatch

Today's Focus

Ramp Product: How does it work?

Ramp Product: How does it work?

Ramp Product: How does it work?

Ramp Products vs. Other Reserves

- Existing Real-Time Reserve Products in PJM
 - 10-minute Synchronized Reserve
 - 10-minute Primary Reserve
 - 30-minute Operating Reserve
- Primary function:
 - Be prepared for *contingencies* (e.g., forced outage events)
 - Necessary to meet NERC reliability standards
- Not intended as additional ramp for "normal" net load fluctuations

Ramp Product: Design Choices

- Delivery time?
- Quantity to Procure Up & Down?
 - How to determine system requirements?
- Prices in Demand Curve?
 - e.g., penalties for shortage
- Cascade with other Reserve Products?
- Include non-spinning contributions?
 (for longer delivery times)
- Which resources are eligible to provide?

PJM Market Simulation Model: Rolling Horizon

- Developed by PSU-PJM team since 2020 (U.S. Dept. of Energy)
- Simulates the rolling horizon and uncertainty in real-time forecasts
 - Most models optimize over the entire day, assume net load is known
- Can simulate a full year at 5-minute time-scale

Simulation Assumptions

- Future PJM resource mix (hypothetical)
 - Accelerated thermal unit retirements
 - Additional wind, solar installed capacity
 - Load growth
 - Increase in day-ahead and real-time forecast errors
- Simulated Ramp Product (example)
 - 10-minute delivery time
 - Procures expected ramp plus uncertainty
 - Not cascaded with other reserves
 - Lower penalty for shortage than other products

Example: One Day in Late Spring

- DA over-forecast
- Net load volatility in real-time
- "Unserved Energy"
 - Shortfall from market-cleared supply
 - Indicator of system stress
 - Requires additional processes
- Including a 10-min. Ramp Product
 - Eliminates all "unserved energy"
- How does ramp improve reliability?
 - More capacity brought online in RT
 - Ramp capability provided by mix of CC & CT
 - Some units pre-ramped to be prepared

Discussion: General Trends and Questions

- Majority of simulated days for a future case
 - Adding a ramp product alleviates system stress and improves reliability
 - Primary mechanism: inducing additional commitments in real-time
- Cost impacts
 - Main effect: shifts out-of-market costs into the real-time market
- How much ramp to procure?
 - Large requirement increases cost; Lower requirements may be ineffective
- Delivery time?
 - Short-term (e.g., 10-minutes)?
 - Long-term (e.g., 60-minutes)?
 - Multiple products?

Thank you

Contact:

Mort Webster mdw18@psu.edu Professor of Energy Engineering Dept. of Energy and Mineral Engineering Pennsylvania State University

Ramp Products in Other Markets

Ramp Reserve Products in ISO/RTOs

	MISO	CAISO	SPP
Short-Term Ramp Products			
Product Name	Up and down Ramp Capability	Flexible Ramping Product- upward and downward reserves	Ramp Capability Product
Time Requireme nt	10 mins	5 mins	10 mins
Long-Term Ramp Products			
Product Name	Short-Term Reserves	Imbalance Reserves	Uncertainty Product
Time Requireme nt	30 mins	15 min, but focused on day-ahead	One Hour

