

RMDSTF Regulation Requirement PJM's Proposal Follow-Up

Madalyn Beban, Market Design & Economics RMDSTF May 16, 2023

- Recap proposal from April RMDSTF
 - Minor update to HE definitions
- Discuss proposed annual adjustment methodology
 - Component metrics and mockup
- Discuss Regulation Up/Down translation
 - MW schedule and adjustment logic

J pjm

Summary of Regulation Requirement Proposal

Season	Dates	Hours Ending	Requirement MW
Winter	Nov. 1 – Feb. 28	HE 5 – 10, HE 17 – 24	800
		HE 1 – 4, HE 11 - 16	500
Spring	March 1 - April 30	HE 19 – 1, HE 6 – 9	800
		HE 2 – 5, HE 10 – 18	500
Summer	May 1 – Sept. 15	HE 5 – 15, HE 20 – 1	800
		HE 2 – 4, HE 16 - 19	500
Fall	Sept. 15 – Oct. 31	HE 6 – 9, HE 18 – 24	800
		HE 1 – 5, HE 10 - 17	500

pim	Final F	Final Proposal with Modified Summer Hours			
		Shifted HE definitions to align with hourly tendencies in ACE, CPS, operations experience			
Season	Dates	Hours Ending	Requirement MW		
Winter	Nov. 1 – Feb. 28	HE 5 – <mark>10</mark> , HE 17 – 24	800		
		HE 1 – 4, HE <mark>11</mark> - 16	500		
Spring	March 1 - April 30	HE 19 – 1 , HE 6 – 9	800		
		HE 2 – 5, HE 10 – 18	500		
Summer	May 1 – Sept. 15	HE <mark>5</mark> – 1	800		
		HE 2 – 4	500		
Fall	Sept. 15 – Oct. 31	HE 6 – <mark>9</mark> , HE 18 – 24	800		
		HE 1 – 5, HE <mark>10</mark> - 17	500		

- Goal: Codify an annual review of system performance metrics and adjust requirement based on seasonal hourly profiles in past year
- Metrics of interest include:
 - 1. Average Hourly Absolute Net ACE MW Deviations (ACE_{NetDev})

= Average of Abs(Net ACE) across all 5-min intervals in each hour, where Net ACE = (Control ACE - REGMW) for each interval

- 2. Hourly CPS1 Scores (CPS)
- 3. Average Hourly Reg Utilization Percentages (RU)

= Average of ($\sum \text{REGMW} / \sum \text{TREG}$) for all 5-min intervals in each hour

Annual Adjustment Logic

- Collect performance metrics from all hours in each Season-HE group (ACE_{NetDev}, CPS, RU)
- 2. Aggregate and apply the following conditions to find requirement adders
 - CPS Adder = -25 MW if CPS > 140% more than 50% of the time
 - CPS Adder = +25 MW if CPS < 120% more than 50% of the time
 - CPS Adder = +50 MW if CPS < 100% more than 25% of the time
 - CPS Adder = 0 MW otherwise
 - ACE Adder = -25 MW if $ACE_{NetDev} < +/-247MW$ more than 50% of the time
 - ACE Adder = +25 MW if ACE_{NetDev} > +/- 494MW and < +/- 741 MW more than 50% of the time
 - ACE Adder = +50 MW if ACE_{NetDev} > +/- 741 MW more than 50% of the time
 - ACE Adder = 0 MW otherwise

Net Adder_{Season,HE} = ACE Adder_{Season,HE} + CPS Adder_{Season,HE}

- 3. Check the net adder's effect against average Season-HE regulation utilization (RU)
 - If average RU supports the net adder, proceed with adjustment
 - If average RU contradicts the net adder, nullify the adjustment

Simple Visualization of Adjustment Framework

Season	HE	Baseline Req.	ACENetDev Adder	CPS Adder	RU Check	Adjusted Req.
Spring	1	800	0	-25	0	800
Spring	2	500	0	-25	1	475
Spring	3	500	0	-25	1	475
Spring	4	500	0	-25	1	475
Spring	5	500	0	-25	0	500
Spring	6	800	0	25	1	825
Spring	7	800	25	25	1	850
Spring	8	800	0	-25	0	800
Spring	9	800	0	-25	0	800
Spring	10	500	0	-25	0	500
Spring	11	500	0	-25	0	500
Spring	12	500	0	-25	0	500
Spring	13	500	0	-25	0	500
Spring	14	500	0	-25	0	500
Spring	15	500	0	-25	0	500

- = Season-Hour raised

Simple Visualization of Adjustment Framework

Season	HE	Baseline Req.	ACENetDev Adder	CPS Adder	RU Check	Adjusted Req.
Spring	16	500	0	-25	0	500
Spring	17	500	0	-25	1	475
Spring	18	500	0	-25	1	475
Spring	19	800	0	-25	0	800
Spring	20	800	0	-25	1	775
Spring	21	800	0	-25	1	775
Spring	22	800	0	-25	1	775
Spring	23	800	0	0	0	800
Spring	24	800	0	-25	1	775

- Translation of the discussed requirement to an asymmetric product definition is in line with status quo
 - *Recall*: Requirement MW procured today represents a range
 - i.e. 800 MW Requirement translates to +800, -800 range procured
- 800 MW Requirement in future will look like 800 MW Up, 800 MW Down for hours initially classified as high regulation per the requirement table

- ACE metric that feeds the ACE Adder previously described can be split, computed for positive and negative ACE deviations
 - Instead of absolute deviation (+/- from zero), consider direction
- Reg Utilization metric can be split, computed for utilization % in up and down directions
- CPS metric cannot be split but will be retained and applied as in the bidirectional case

Facilitator: Michael Herman, michael.herman@pjm.com

Secretary: Wenzheng Qiu, Wenzheng.Qiu@pjm.com

SME/Presenter: Madalyn Beban, madalyn.beban@pjm.com

PJM RMDSTF Regulation Requirement

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

