

2017 Indiana State Infrastructure Report (January 1, 2017 – December 31, 2017)

May 2018

This report reflects information for the portion of Indiana within the PJM service territory.

www.pjm.com

PJM©2018

Table of Contents

1. Planning

- Generation Portfolio Analysis
- Transmission Analysis
- Load Forecast

2. Markets

- Capacity Market Results
- Market Analysis
- 3. Operations
 - Emissions Data

Note: all Indiana-specific information in this slide deck refers only to the portion of Indiana served by PJM.

Executive Summary

- **Existing Capacity:** Natural gas represents approximately 35.3 percent of the total installed capacity in Indiana while coal represents approximately 59.0 percent. This differs from PJM where natural gas and coal are at 37 and 32 percent of total installed capacity.
- Interconnection Requests: Natural gas represents approximately 66 percent of new interconnection requests in Indiana.
- **Deactivations**: Indiana had no generation deactivations for deactivation notifications in 2017.
- **RTEP 2017:** Indiana RTEP 2017 projects total more than \$626 million in investment. Approximately 59 percent of that represents supplemental projects.
- Load Forecast: Indiana load growth is nearly flat, averaging 0.5 percent per year over the next 10 years. This aligns with PJM RTO load growth projections.

Executive Summary

- **2021/22 Capacity Market:** Indiana cleared 140 MW more Demand Response and Energy Efficiency resources than in the prior auction.
- 6/1/15 12/31/17 Market Performance: Indiana's average daily locational marginal prices were generally similar to PJM average daily LMPs. Coal resources represented 59.0 percent of generation produced in Indiana while gas and wind resources represented 25.7 and 14.9 percent, respectively. Indiana exported 21.4% of the generation produced within the state.
- **Emissions:** 2017 carbon dioxide emissions rose slightly from 2016; 2017 sulfur dioxide emissions are down while 2017 nitrogen oxide emissions are consistent with those in 2016.

PJM Service Area – Indiana

Planning Generation Portfolio Analysis

Indiana – Existing Installed Capacity

(MW submitted to PJM, December 31, 2017)

Summary:

Natural gas represents approximately 35.3 percent of the total installed capacity in Indiana while coal represents approximately 59.0 percent.

Overall in PJM, natural gas represents approximately 37 percent of installed capacity while coal represents 32 percent.

* Gas Contains						
Natural Gas	1,566 MW					
Other Gas	7.2 MW					

Indiana – Interconnection Requests

(Requested Capacity Rights, December 31, 2017)

Fuel Source	Capacity, MW	Nameplate Capability, MW
Natural Gas	1,915.0	1,965.0
Wind	547.1	4,228.4
Solar	379.6	970.0
Coal	36.0	36.0
Storage	20.0	40.0
Total	2,897.7	7,239.4

Fuel as a Percentage of Projects in Queue

Natural gas represents approximately 66 percent of new interconnection requests in Indiana.

Indiana – Interconnection Requests

(As of December 31, 2017)

		Com	plete			In Queue										
	In Service		In Service		In Service		With	drawn*	Ac	tive	Suspe	ended**	Un Constr	der uction**	Gran	d Total
	MW	# of Projects	MW	# of Projects	MW	# of Projects	MW	# of Projects	MW	# of Projects	MW	# of Projects				
Non-Renewable	76	5	2,651	6	1,220	6			751	3	4,698	20				
Coal	30	3	901	2					36	1	967	6				
Natural Gas	46	2	1,747	2	1,200	4			715	2	3,708	10				
Storage			3	2	20	2					23	4				
Renewable	359	13	1,251	37	864	19	62	3			2,537	72				
Methane	8	2	4	1							12	3				
Solar	5	3	145	4	380	8					530	15				
Wind	346	8	1,103	32	485	11	62	3			1,996	54				
Grand Total	435	18	3,903	43	2,084	25	62	3	751	3	7,235	92				

*May have executed final agreement

** Executed final agreement (ISA / WMPA)

bim

1

Indiana – Future Capacity Mix

Based on known queued interconnection requests and deactivation notices through December 31, 2022, adjusted to reflect the probability of commercialization as indicated by historical trends specific to an interconnection request's state/zonal location and fuel type.

Indiana – Progression History Interconnection Requests

Projects under construction, suspended, in service, or withdrawn - As of December 31, 2017

Application Received by PJM	Feasibility Study Phase Complete	System Impact Study Phase Complete	Facilities Study Phase Complete	Final Agreement Executed	Construction of Facilities	In Service
5,151 MW	4,040 MW	1,948 MW	1,503 MW	1,296 MW	1,248 MW	1,150 MW

Projects that withdrew after a final agreement

	Number of Projects	Capacity, MW	Nameplate Capability, MW
ISA	1.0	48.0	240.0

22.3% of requested capacity megawatt and 29.9% of projects reaches commercial operation

Indiana – Actual Generation Deactivations and Deactivation Notifications Received in 2017

Indiana had no generation deactivations or deactivation notifications in 2017.

Planning Transmission Infrastructure Analysis

Indiana – RTEP Baseline Projects

(Greater than \$5 million)

Note: Baseline upgrades are those that resolve a system reliability criteria violation.

Indiana - RTEP Baseline Projects (Greater than \$5 million)

Project ID	Project	Project Driver	Required In Service Date	Project Cost (\$M)	TO Zone(s)	2017 TEAC Review
h2071	Perform sag mitigation on the Burnham-Munster 345 kV circuit	Congestion Relief -	6/1/2020	\$ 70	ComEd	
02371	Reconfigure Munster 345kV as ring bus	Economic	0/1/2020	ψ 7.0	NIPSCO	11/9/2017
h2831	Upgrade the Tanner Creek - Miami Fort 345 kV circuit (DEOK portion) to achieve new ratings of 2151 MVA Summer Normal and 2151 MVA Summer Emergency	e the Tanner Creek - Miami Fort 345 kV circuit (DEOK portion) to achieve new ratings MVA Summer Normal and 2151 MVA Summer Emergency		¢ 70	DEOK	1/12/2017
D203 I	Upgrade Tanner Creek to Miami Fort 345 kV line (AEP portion) to achieve new ratings of 1825 MVA Summer Normal and 1868 MVA Summer Emergency	Reliability	11/1/2018	φ 1.0	AEP	1/12/2017
	Expand Auburn 138 kV bus					
	Construction a new 138 kV station, Campbell Road, tapping into the Grabill – South Hicksville138 kV line					
	Reconstruct sections of the Butler-N.Hicksville and Auburn-Butler 69 kV circuits as 138 kV double circuit and extend 138 kV from Campbell Road station	Baseline Load Growth				
b2779	Looped 138 kV circuits in-out of the new SDI Willington 138 kV station resulting in a direct circuit to Auburn 138 kV and in direct circuit to Auburn and Rob Park via Dunton Lake, and a circuit to Campbell Road; Reconductor 138kV line section between Dunt	Deliverability & 6/1/2016 Reliability		\$ 107.7	AEP	11/3/2016
	Construct a new 345/138 kV SDI Wilmington Station which will be sourced from Collingwood 345 kV and serve the SDI load at 345 kV and 138 kV respectively					

Indiana – RTEP Network Projects

(Greater than \$5 million)

Note: Network upgrades are new or upgraded facilities required primarily to eliminate reliability criteria violations caused by proposed generation, merchant transmission or long term firm transmission service requests.

Indiana - RTEP Network Projects (Greater than \$5 million)

Description	Project Driver	Queue	Required In Service Date	Project Cost (\$M)	TO Zone(s)	2017 TEAC Review
Sturgis-Howe 69kV T-Line Removal	Generation	X1-020	7/1/2019	\$ 6() AFP	10/12/2017
Right Of Way	Contration		17172010	φ 0.0		10/12/2011
Telecommunications - Fiber Optic between Stations						
765 kV Metering	Generation	X1-020	7/1/2019	\$ 34.7	AEP	10/12/2017
Greentown-Dumont 765kV T-Line Circuit Cut-In						
Reconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine		Not Specified		\$ 88.3		10/12/2017
riser				φ σοι		10/12/2011
Construct a new three (3) circuit breaker 345 kV switching station along the Desoto – Fall Creek 345 kV Line	Generation	AB2-028	10/31/2018	\$ 5.6	AEP	10/12/2017
	Description Sturgis-Howe 69kV T-Line Removal Right Of Way Telecommunications - Fiber Optic between Stations 765 kV Metering Greentown-Dumont 765kV T-Line Circuit Cut-In Reconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine riser Construct a new three (3) circuit breaker 345 kV switching station along the Desoto – Fall Creek 345 kV Line	DescriptionProject DriverSturgis-Howe 69kV T-Line Removal Right Of WayGenerationTelecommunications - Fiber Optic between Stations 765 kV Metering Greentown-Dumont 765kV T-Line Circuit Cut-InGenerationReconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine riserGenerationConstruct a new three (3) circuit breaker 345 kV switching station along the Desoto – Fall Creek 345 kV LineGeneration	DescriptionProject DriverQueueSturgis-Howe 69kV T-Line Removal Right Of WayGenerationX1-020Telecommunications - Fiber Optic between Stations 765 kV Metering Greentown-Dumont 765kV T-Line Circuit Cut-InGenerationX1-020Reconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine riserNot SpecifiedNot SpecifiedConstruct a new three (3) circuit breaker 345 kV switching station along the Desoto – Fall Creek 345 kV LineGenerationAB2-028	DescriptionProject DriverQueueRequired In Service DateSturgis-Howe 69kV T-Line Removal Right Of WayGenerationX1-0207/1/2019Telecommunications - Fiber Optic between Stations 765 kV Metering Greentown-Dumont 765kV T-Line Circuit Cut-InGenerationX1-0207/1/2019Reconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine riserNot SpecifiedNot Specified10/31/2018Construct a new three (3) circuit breaker 345 kV switching station along the Desoto – Fall Creek 345 kV LineGenerationAB2-02810/31/2018	DescriptionProject DriverQueueRequired In Service DateProject Cost (\$M)Sturgis-Howe 69kV T-Line Removal Right Of WayGenerationX1-0207/1/2019\$6.0Telecommunications - Fiber Optic between Stations 765 kV Metering Greentown-Dumont 765kV T-Line Circuit Cut-InGenerationX1-0207/1/2019\$34.7Reconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine riserNot SpecifiedImage: Second	DescriptionProject DriverQueueRequired In Service DateProject Cost (\$M)TO Zone(\$)Sturgis-Howe 69kV T-Line Removal Right Of WayGenerationX1-0207/1/2019\$6.0AEPTelecommunications - Fiber Optic between Stations 765 kV Metering Greentown-Dumont 765kV T-Line Circuit Cut-InGenerationX1-0207/1/2019\$34.7AEPReconductor or rebuild the Eugene – Dequine 345 kV line and replace the Dequine riserNot SpecifiedImage: Single Construct a new three (3) circuit breaker 345 kV switching station along the Desoto – Fall Creek 345 kV LineNot Specified10/31/2018\$5.6AEP

Indiana – TO Supplemental Projects

(Greater than \$5 million)

Note: Supplemental projects are transmission expansions or enhancements that are used as inputs to RTEP models, but are not required for reliability, economic efficiency or operational performance criteria, as determined by PJM.

bim'

1

Indiana - TO Supplemental Projects (Greater than \$5 million)

Project ID	Description	Required Date	Project (<u>\$</u> N	: Cost I)	TO Zone(s)	2017 TEAC Date
s1194	Build 69 kV line between Lincoln and a new 138/69 kV Berrywood station to provide loop service.	12/1/2018	\$	38.7	AEP	1/5/2017
s1195	Tap the existing Hadley-McKinley 69 kV circuit and construct a new 69 kV double circuit extension to a new Melita 69 kV station, retiring Webster station and converting existing 34.5 kV transmission lines from Hillcrest to Melita (formerly Webster).	12/13/2017	\$	24.0	AEP	1/5/2017
s1200	Construct a new 138/12 kV Aviation station and approximately 4.7 miles of new 138 kV line from Waynedale Station and a newly established Dalman Road switching station.	12/31/2017	\$	11.6	AEP	1/5/2017
	Waynedale Station will be upgraded with modifications to the 138 kV and 12 kV systems.					
s1278	At Dumont station, replace the existing 765/345kV 500MVA transformer T1 with new 765/345kV/34.5 750MVA transformer T3 and a spare T3SP 765/345kV/34.5 750MVA transformer along with associated equipment and protection.	12/29/2017	\$	43.7	AEP	5/4/2017
	Olive-Bosserman 138 kV					
	Install a three way phase over phase switch, called Kuchar, near Liquid Carbonics station and construct a new 138 kV line between Bootjack and Kuchar.					
4070	Construct two 138/12 kV distribution stations, Bootjack and Marquette, to replace Silver Lake 34.5 kV and Springville 69 kV stations.	10/1/00/10	•			5/4/00/17
s1279	Cut the existing Olive – Bosserman line into New Carlisle station.	12/1/2019	\$	36.8	AEP	5/4/2017
	Rebuild sections of the LaPorte Junction-New Carlisle/New Buffalo 34.5 kV line to 138 kV to establish Bootjack- Olive 138 kV circuit utilizing 795 ACSR conductor (251 MVA rating).					
	Construct a 138 kV extension to Marquette station by tapping the Bosserman-Liquid Carbonics 138 kV line utilizing 795 ACSR conductor (251 MVA rating).					

Indiana - TO Supplemental Projects (Greater than \$5 million)

Project ID	Description	Required Date	Project Cost (\$ <u>M</u>)	TO Zone(s)	2017 TEAC Date
	Convert Gravel Pit station. Construct two new 138kV lines. Retire Bowman Creek.				
	Replace and convert the existing Gravel Pit 34.5/12 kV station with a 138/12 kV station.				
	Construct two single circuit 138 kV lines (795 ACSR conductor, 251 MVA rating), approximately 6 miles total and tap the				
s1309	Jackson Road – New Carlisle 138 kV line (Edison – Kankakee 138 kV ckt).	12/1/2018	\$ 17		5/31/2017
31000	De-energize sections of the Jackson Road – New Carlisle 138 kV line (Edison – Kankakee 138 kV ckt).	12/1/2010	ψ 17.		5/51/2017
	Retire the 34.5 kV tap line that at present is utilized to serve Gravel Pit station from the Jackson Road – Kankakee 34.5				
	kV ckt. In addition, retire Gravel Pit station.				
	Retire Bowman Creek 34.5 kV switch.				
s1316	Rebuild approximately 8 miles of 69 kV line between Albion and Kendallville stations (starting at structure 32) using 795	6/1/2018	\$7.	6 AEP	5/31/2017
	ACSR conductor (128 MVA rating) on the existing circuit centerline	0, 1, 2010	· · ·		
	Replace transformer at Jackson Road. Rebuild Jackson Road-Marhsall 69kV line. Convert Quinn and Vintage stations.				
	Replace 138/34.5 kV transformer with a 138/69-34.5 kV transformer, replace 34.5 kV circuit breaker F, and add a new 69				
	kV breaker at Jackson Road station.				
s1324	Convert Quinn to 69 kV	12/1/2018	\$ 32.	AEP	5/31/2017
	Construct Vintage 69 kV station to replace Lapaz				
	Rebuild and convert ~13 miles of 34.5 kV line between Jackson Road and Marshall (NIPSCO) to 69 kV utilizing 556				
	ACSR conductor (102 MVA rating).				
	Install 69 kV tie line metering at Marshall station				
	Replace transformers and circuit breakers at Kankakee				
s1326	Replace existing Kankakee transformer #1 with a 138/69/34.5 kV 130 MVA transformer.	12/1/2017	\$ 5.	AFP	5/31/2017
	Replace 34.5 kV circuit breakers H, I, D and F with new 1200A 25kA circuit breakers along with associated equipment	, ., _ 3	τ Ci		0/01/2017
	and protection.				

Indiana - TO Supplemental Projects (Greater than \$5 million)

1	jm Greate						
Project ID	Description	Required Date	Pro Cost	ject (\$M)	TO Zone(s)	2017 TEAC Date	
s1335	Remote end work at New Carlisle station due to breaker addition at Tulip Road. Construct new Tulip Road station Construct a new 34.5 kV Tulip Road station with one circuit breaker on the West Side line exit. Terminate New Carlisle, West Side, Scrap Metals, and Edco lines into the new station.	12/1/2017	\$	7.5	AEP	5/31/2017	
s1336	Rebuild approximately 65 miles of 138 kV double circuit tower line between Twin Branch and Robison Park stations using 795 ACSR overhead conductor (251 MVA rating).	6/1/2020	\$	98.7	AEP	5/31/2017	
s1372	Retire the old Liberty Center REMC switch and install a new 69kV 1200A 3 way PoP switch at structure at Meridian Road. Liberty Center REMC changes Replace Bluffton and Liberty Center line switches with 1200A 61kA 1-way GOAB's. Rebuild the full 6.43 miles of the Liberty Center – Bluffton 69kV circuit utilizing 795 26/7 ACSR (129 MVA rating). Retire line from the old Liberty Center Switch to structure 5 and build 0.58 miles using 4/0 ACSR from the new Liberty Center Switch to structure 5.	3/1/2018	\$	10.6	AEP	9/11/2017	
s1419	At Fall Creek 138kV station, install six 138kV 3000 A 63 kA breakers to complete a breaker-and-a-half arrangement for all line exits at the station. Reroute and terminate the Delco and Pendleton 138KV lines to Fall Creek station exit locations. Reroute and terminate the Madison and New Castle lines to Fall Creek station exit locations.	12/31/2017	\$	7.7	AEP	12/18/2017	
s1423	Rebuild the 17.6 mile Bosman – Hartford City 34.5 kV line utilizing 795 ACSR 26/7 (64 MVA rating). This line will be built to 69kV standards but operated at 34.5kV	8/31/2018	\$	13.6	AEP	12/18/2017	
s1426	At Richmond station, replace 138kV Breaker C with a 3000A 40kA model and replace MOAB's U, V, W, and Y with 3000A MOAB switches. Rebuild College Corner 138kV station in the clear at the existing station site with ten 3000A 40 kA circuit breakers in a breaker and a half arrangement to terminate seven line positions. Replace the control house with a new DICM.	11/30/2018	\$	13.8	AEP	12/18/2017	

Indiana - Merchant Transmission Project Requests

Planning Load Forecast

PJM Annual Load Forecasts

(January 2018)

Indiana – 2018 Load Forecast Report

	Su	mmer Pea	k (MW)		Winter Peak	(MW)
Transmission Owner	2018	2028	Growth Rate (%)	2017/18 2027/28		Growth Rate (%)
American Electric Power Company *	3,770	3,958	0.5%	3,212	3,377	0.5%
PJM RTO	152,108	157,635	0.4%	131,463	136,702	0.4%

* PJM notes that American Electric Power Company serves load other than in Indiana. The Summer Peak and Winter Peak MW values in this table each reflect the estimated amount of forecasted load to be served by American Electric Power Company solely in Indiana. Estimated amounts were calculated based on the average share of American Electric Power Company's real-time summer and winter peak load located in Indiana over the past five years.

Markets Capacity Market Results

Indiana - Cleared Resources in 2021/22 Auction

(May 23, 2018)

	Cleared MW (Unforced Capacity)	Change from 2020/21 Auction
Generation	2,643	403
Demand Response	297	127
Energy Efficiency	31	13
Total	2,429	543

RTO Locational Clearing Price

\$140

NOTE: Demand Response and Energy Efficiency are reported to PJM by Transmission Zone. The numbers above reflect the state's pro-rata share of cross-state zones for illustrative purposes.

PJM - 2021/2022 Cleared MW (UCAP) by Resource Type

.

	Annual	Summer	Winter	Total
Generation	149,616 MW	54 MW	716 MW	150,385 MW
DR	10,674 MW	452 MW	- MW	11,126 MW
EE	2,623 MW	209 MW	- MW	2,832 MW
Total	162,912 MW	716 MW	716 MW	164,343 MW

Jpjm

Indiana – Offered and Cleared Resources in 2021/22 Auction

(May 23, 2018)

		Unforced Capacity
Gonoration	Offered MW	2,684
Generation	Cleared MW	2,643
Demand	Offered MW	324
Response	Cleared MW	297
Energy	Offered MW	35
Efficiency	Cleared MW	31
Total Of	3,043	
Total Cl	2,972	

NOTE: Demand Response and Energy Efficiency are reported to PJM by Transmission Zone. The numbers above reflect the state's pro-rata share of cross-state zones for illustrative purposes.

Markets Market Analysis

Indiana - Average Daily Load and LMP

(June 1, 2015 - December 31, 2017)

Indiana's average daily LMPs generally aligned with PJM average daily LMPs.

Note: The price spike on 9/21/2017 reflects the PJM shortage pricing event. The price spike starting 12/28/2017 reflects the beginning of the Cold Snap.

Jpjm

Indiana – Hourly Average LMP and Load

(June 1, 2015 – December 31, 2017)

Indiana's hourly LMPs generally aligned with PJM average hourly LMPs.

Operations Emissions Data

PJM©2018

