

Hourly Electricity Load Forecasting Using Machine Learning Algorithms

Yinghua Wu, PJM Laura Walter, PJM Anthony Giacomoni, PJM FERC Technical Conference July 9, 2024

PJM as Part of the Eastern Interconnection

Contents

Load Forecast at PJM and New Challenges

Manipulate Time Series Data

Training and testing
 Back test
 Challenge

Methods

- XGBoost
 Neural network
 LSTM
 Transformer
- Bias correction

Case Study

RTO
 Dominion

Conclusion

.**⊅** pjm

Load Forecasts at PJM

Short-Term Forecast	Very Short-Term Forecast
(Hourly):	(5-minute):
 Looks seven days ahead 1100: Day-Ahead Market closes 1800: Reliability Assessment and	 Looks six hours ahead Used by Security Constrained
Commitment (RAC) run	Economic Dispatch (SCED)

Load forecasting is complex, dynamic and an important part of PJM's mission to supply reliable electricity to the 65 million people in the PJM region.

Load Forecast Timeline

Operation Timeline: Day 0 (Current Day) Day 1 Ahead Day 2 Ahead Day 0 (Current Day) Hour Hour Hour

XGBoost, Neural Network (NN)

Tabular type feature ~ target prediction

Long Short-Term Memory (LSTM), Transformer

- Sequence-to-sequence prediction
- Past 24 hours to encode; future 24 hours to forecast

Experiment Setup

Test period:

April 2023 to May 2024, progress monthly

Training period:

Past seven years of history

Methods and Features

Megawatts (at FUTURE_HOUR) ~		
Year Month Weekday Hour Holiday	Temperature Dew point Wind speed Cloud cover	Temperature differences WRT past and after three hours
MW Temperature at CURRENT_HOUR	MW Temperature during same hour yesterday	MW Temperature during same hour last weekday

Future information, current information, past-similar-hour information

RTO Results

XGBoost Zonal Results

RTO Trend vs. Dominion Trend

1

Dominion Data Centers

Connected Data Centers:

67 (35% worldwide) 15 connected in 2023 15 more in 2024

Hourly Average:

In 2022 2023 2.7 GW 3.2 GW

Note: The Company did not review ESAs prior to 2018 and assumed ESAs were equal to actual demand in 2017. Actual ESA totals will be higher than this assumption.

https://www.datacenterfrontier.com/energy/article/33013010/dominion-virginias-data-center-cluster-could-double-in-size

Forecast Error and Bias in Dominion

Bias Correction

We use two learners:

MW = MW(Forecast) + Bias

MWMW ~ Features, use efficient and accurate modelsLearner

BIAS Learner

- We don't know true bias.
- Forecast Error ~ MW(Forecast) + Hour
 - The idea is to use a weak learner to infer bias, XGBoost again.

Bias Correction in Dominion

Bias Correction in RTO

Conclusion

We tested XGB, NN, LSTM, Transformer on hourly forecast.	Dominion data center load is challenging and will be more so in next few years.
Practically, XGB is significantly faster and slightly more accurate than others.	PJM is prepared to deal with the challenges economically.

Acknowledgement: Ms. Kexin Xie, PhD candidate, Department of Statistics, Virginia Tech