

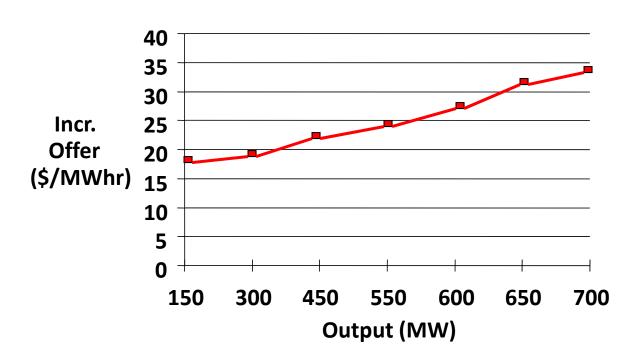
# Dispatch Signal & Locational Marginal Pricing (LMP)

PJM State & Member Training Dept.

# **Objectives**



## Students will be able to:


Identify how PJM dispatches & utilizes LMP

## **Dispatch Rate**

- Economic control signal is called Dispatch Rate (\$/MWh) or Economic Basepoint (MW)
- Moves operating point of generating unit to change MW output to assist ACE in returning to zero
  - If ACE<0, signal increases
  - If ACE>0, signal decreases

## **Incremental Offer Curve**

| <u>Output</u> | <u>Offer</u> |
|---------------|--------------|
| 150           | 18.0         |
| 300           | 19.7         |
| 450           | 22.5         |
| 550           | 24.1         |
| 600           | 27.3         |
| 650           | 31.0         |
| 700           | 34.5         |
|               |              |



# **System Incremental Curve**

#### **Control Signal**

**\$/MW** 

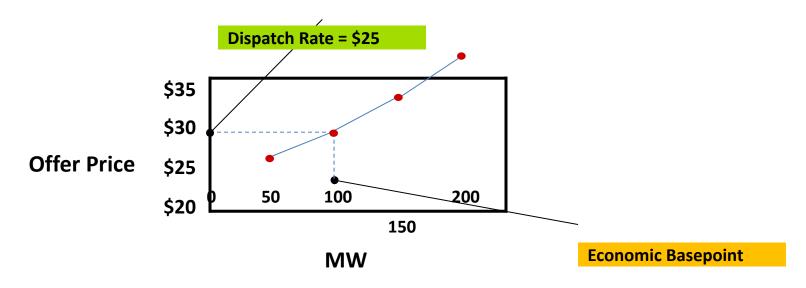
| HR                   | Unit 1           | Unit 2           | Unit 3          | Unit 4         | Unit 5 | Unit 6 | Unit 7 | Unit 8         | Unit 9 | Total             |
|----------------------|------------------|------------------|-----------------|----------------|--------|--------|--------|----------------|--------|-------------------|
| 20.0                 | 20               | 20               |                 |                |        |        |        |                |        | 150               |
| 21.0                 | 33               | 35               |                 |                |        |        |        |                |        | 178               |
| 22.0                 | 57               | 58               |                 | 20             |        |        |        | 20             |        | 225               |
| 23.0                 | 77               | 79               |                 | 36             |        |        |        | 21             |        | 283               |
| 24.0<br>25.0<br>26.0 | 96<br>108<br>119 | 98<br>109<br>120 | 14<br>81<br>159 | 48<br>60<br>73 |        |        |        | 38<br>48<br>58 |        | 350<br>462<br>585 |
| 27.0                 | 126              | 126              | 222             | 82             |        |        | 12     | 65             | 20     | 677               |
| 28.0                 | 132              | 132              | 274             | 89             |        | 12     | 17     | 71             | 31     | 770               |
| 29.0                 | 135              |                  | 312             | 95             | 12     | 22     | 27     | 77             | 41     | 853               |
| 30.0                 |                  |                  | 348             | 101            | 14     | 31     | 34     |                | 49     | 921               |
| 31.0                 |                  |                  | 375             |                | 22     | 38     | 40     |                | 57     | 977               |
| 32.0                 |                  |                  | 398             |                | 31     | 42     | 44     |                | 63     | 1023              |

Load Demand = 853 MW Dispatch Rate= \$29/MWh

## **Computing the Dispatch Rate**

Definition: The <u>Dispatch Rate</u> is expressed in dollars per MWh, calculated and transmitted to each generator to direct the output level of all generation resources dispatched by PJM based on the incremental offer data which was previously received from the Generators




#### **Generation Offers**



| Generating Unit # 1           | Generating Unit # 2           |
|-------------------------------|-------------------------------|
| Offer Price = \$ 10.00 200 MW | Offer Price = \$ 15.00 220 MW |
| \$ 20.00 300 MW               | \$ 22.00 310 MW               |
| \$ 30.00 400 MW               | \$ 32.00 425 MW               |
| \$ 40.00 500 MW               | \$ 41.00 500 MW               |
| \$ 50.00 600 MW               | \$ 54.00 600 MW               |

#### **Economic Basepoint**

 The <u>Economic Basepoint</u> is the MW value sent to the generating unit that indicates to what level the unit should be loaded based on the economic dispatch solution and the units incremental price curve



# **Out of Merit Operation (Off Cost)**

| Dispat | ch Signal |        |        |        |        |        |        |        |        |       |
|--------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| \$/MW  |           |        |        |        |        |        |        |        |        |       |
| hr     | Unit 1    | Unit 2 | Unit 3 | Unit 4 | Unit 5 | Unit 6 | Unit 7 | Unit 8 | Unit 9 | TOTAL |
| 26.0   | 119       | 120    | 159    | 73     |        |        |        | 58     |        | 585   |
| 27.0   | 126       | 126    | 222    | 82     |        |        | 12     | 65     | 20     | 677   |
| 28.0   | 132       | 132    | 274    | 89     | _      | 12     | 17     | 71     | 31     | 770   |
| 29.0   | 135       |        | 312    | 95     | 12     | 22     | 27     | 77     | 41     | 853   |
| 30.0   | _         |        | 348    | 101    | 14     | 31     | 34     |        | 49     | 921   |
| 31.0   |           |        | 375    |        | 22     | 38     | 40     |        | 57     | 977   |

Load Demand = 853 MW Zonal Dispatch Rate = \$29/MWh

PJM@2015



# **Manual Dispatch**

## **Manual Dispatch**

#### What is Manual Dispatch?

- Manual dispatch is when PJM has to take steps to manually determine which resource should be used to help resolve a constraint on the system
- Manual dispatch is used after all economic resources have been have been exhausted

#### **Manual Dispatch**

#### How does PJM perform Manual Dispatch?

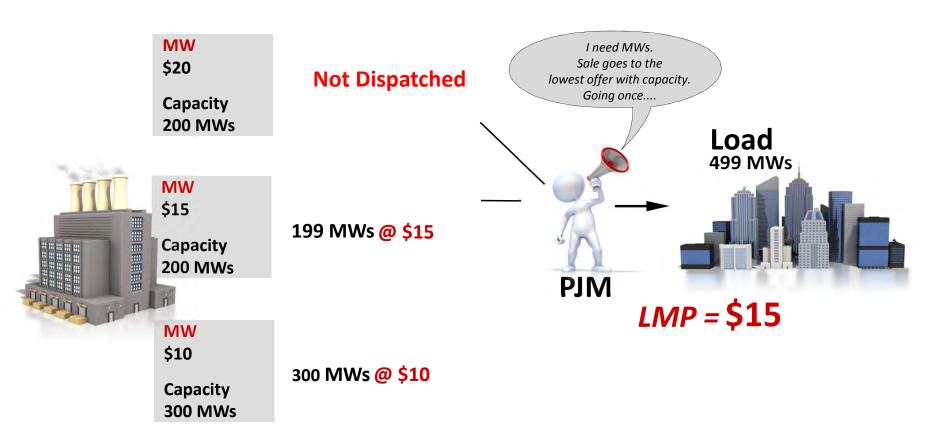
- PJM must identify the <u>amount of relief</u> needed to resolve the constraint
- PJM uses a report from the PJM EMS to determine which resources would be effective in resolving the constraint
- PJM will contact the required resources and request the curtailment
- PJM will continually assess the constraint and make any necessary changes



# **LMP Basics**

#### What is LMP?

- Locational Marginal Price
- Pricing method PJM uses to:
  - price energy purchases and sales in PJM Market
  - price transmission congestion costs to move energy within PJM RTO
  - price losses on the bulk power system
- Physical, flow-based pricing system:
  - how energy actually flows, NOT contract paths




#### **How does PJM Use LMP?**

- Generators get paid at generation bus LMP
- Loads pay at load bus LMP
- Transactions pay differential in source and sink LMP



# **Economic Dispatch Exercise**



# **Locational Marginal Price**



LMP is made up of 3 independent components

## **LMP Components - System Energy Price**



# ☑ System Energy Price

- Represents optimal dispatch ignoring congestion and losses
- Same price for every bus in PJM
- Calculated both in day ahead and real time

## **LMP Components - System Energy Price**

Installed = 2,000 MW

System Energy Price = \$20 Congestion = Losses =

103363 -

LMP= \$20

#### Dispatch 1500 MW



Transmission path



System Energy Price = \$20

Congestion =

Losses =

LMP = \$20



Installed = 700 MW

**Note:** ignoring losses and congestion

PJM@2015

01/27/2015

#### **LMP Components - Congestion**



#### 

- Represents price of congestion for binding constraints
  - Calculated using cost of marginal units controlling constraints and sensitivity factors on each bus
- Will be zero if no constraints
  - Will vary by location if system is constrained
- Calculated both in day ahead and real time

# **LMP Components - Congestion**

\$20 System Energy Price = Congestion = \$30 Losses = \$50

Installed = 2,000 MW

Dispatch 1000 MW







| System Energy Price = | \$20 |  |
|-----------------------|------|--|
| Congestion =          | \$ 0 |  |
| Lossos –              |      |  |

Losses =

\$20 LMP =

Dispatch 500 MW

LMP=

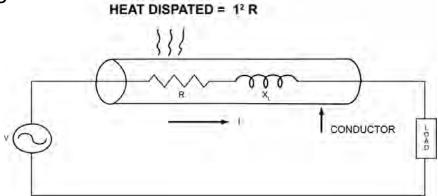



Installed = 700 MW

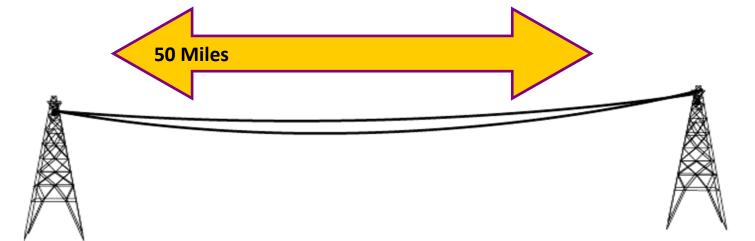
**Note:** ignoring losses

PJM@2015

# **LMP Components - Marginal Losses**




#### ☑ Loss Price


- Represents price of marginal losses
  - Calculated using penalty factors
  - Will vary by location
- Calculated both in day-ahead and real-time

#### **Transmission Losses**

- Real Power (MW) Losses
  - Power flow converted to heat in transmission equipment
  - Heat produced by current (I) flowing through resistance (R)
  - Losses equal to I2R
  - Heat loss sets the "thermal rating" of equipment
- Losses increase with:
  - Lower voltage
  - Longer lines
  - Higher current



#### **Transmission Losses**



Power In: 100 MW

Voltage In: 235 KV

Current In: 425.53 A

Power Out: 90.946 MW

Power Loss: 9.054 MW

Voltage out: 213.72 KV

Current Out: 425.53 A

# **LMP Components Marginal Losses**

System Energy Price = \$20
Congestion = \$30
Installed = 2,000 MW  $\frac{\text{Losses}}{\text{LMP}} = $52$ 

# Dispatch 1010 MW



| Flow = 1000 MW  |  |
|-----------------|--|
|                 |  |
| Limit = 1000 MW |  |
|                 |  |



| System Energy Price = | \$20   | Dispatch 520 MW        |
|-----------------------|--------|------------------------|
| Congestion =          | \$ 0   | DIS PALCIT SZO IVIV    |
| Losses =              | (\$ 1) | <br>Installed = 700 MV |
| IMP =                 | \$19   | ilistalieu – 700 WW    |

**Note:** assume 2% (30mw) losses — allocation of losses in this example are theoretical Losses on a real system are optimized based on system topology



# Questions?