Electrical Theory

Impedance

PJM State \& Member Training Dept.

Objectives

By the end of this presentation the Learner should be able to:

- Identify the components of impedance in AC Circuits
- Calculate the total impedance in AC Circuits
- Identify the characteristics of Phase Angles

Components of Impedance in AC Circuits

Resistance

- Resistance: $\quad R=\frac{E}{I}$
- A change in frequency has no effect on resistance
- Current through a resistor and the voltage drop across the resistor are always in phase

Time \longrightarrow

Resistance Characteristics

- In a purely resistive AC circuit:
- Voltage and current cycles begin and end at the same time
- Voltage and current peak values occur at the same time
- Relationship between current and voltage for resistance in an AC circuit is the same as it is in a DC circuit
- Measured values of current and voltage are the Root Mean Square (RMS) values of these quantities
- Only resistance consumes power in a circuit

$$
P=E_{R M S} I_{R M S} \cos \theta
$$

Inductive Reactance Characteristics

- An inductor's basis of operation is Faraday's law of electromagnetic induction
- An inductor develops a voltage that opposes a change in current
- Does not convert electrical energy into heat energy

Inductive Reactance Characteristics

- It is the result of induced voltage in a coil by the moving magnetic field created by current flow
- Current must be changing for voltage to be induced
- An inductor allows just enough current flow to produce a voltage equal to but opposing the source voltage
- Inductive reactance $\left(X_{\mathrm{L}}\right)$ is measured in ohms and determines how much RMS current exists in an inductor for a given RMS voltage across the inductor

Inductive Reactance

- Average power and average energy used by a inductor in an AC circuit is zero
a) When the voltage and current product is positive, the inductor is returning energy
b) When the voltage and current product is negative, energy is delivered to the inductor

Inductive Reactance

- Ohm's Law and inductive reactance:
where,

$$
E=(I)\left(X_{L}\right) \quad X_{L}=2 \pi f L
$$

E and $I=R M S$ values for voltage and current

$$
\begin{aligned}
& \mathrm{f}=\text { frequency (hertz) } \\
& \mathrm{L}=\text { inductance (henry) }
\end{aligned}
$$

- Increasing frequency increases inductive reactance
- As frequency increases, current changes more rapidly increasing the value of induced voltage

Inductive Reactance

In a purely inductive circuit, voltage leads the current by 90 degrees

$$
\begin{aligned}
& \mathrm{e}=\square \\
& \mathrm{i}=---- \\
& \mathrm{p}=
\end{aligned}
$$

Time

Capacitive Reactance

- Ohm's Law and capacitive reactance: $\quad I=\frac{E}{X_{C}} \quad X_{C}=\frac{1}{2 \pi f C}$ where,
E and $I=R M S$ values for voltage and current
$\mathrm{f}=$ frequency (hertz)
C = capacitance (farads)
- Increasing frequency decreases capacitive reactance
- As frequency decreases, capacitive reactance becomes infinitely large, and a capacitor provides so much opposition to the motion of charges that there is no flow of current

Capacitive Reactance Characteristics

- In an AC circuit containing a capacitor, the polarity of the voltage continually reverses switching back and forth with the electrical charges also surging back and forth
- This constitutes an alternating current with charge flowing continuously
- A capacitor controls the current in an AC circuit by storing energy that produces voltage in a capacitor
- Capacitive reactance $\left(X_{C}\right)$ is measured in ohms and determines how much RMS current exists in a capacitor in response to a given RMS voltage across the capacitor

Capacitive Reactance Characteristics

- Does not convert electrical energy into heat energy
- It is the result of the capacitor storing energy that produces a voltage that opposes the source voltage and controls current
- Average power and average energy used by a capacitor in an AC circuit is zero
a) When the voltage and current product is positive, energy is delivered to the capacitor
b) When the voltage and current product is negative, the capacitor is returning energy

Capacitive Reactance

- In a purely capacitive circuit, current leads the voltage by 90 degrees

Time

Capacitive Reactance

- Capacitors are used by utilities for:
- Voltage regulation
- Power factor correction
- Inductance reduction
- Measuring devices for protection systems
- Communications for power line carriers
- Filters for undesirable high frequency signals

Total Impedance in AC Circuits

Total Impedance

- The impedance (Z) of an AC circuit is a complex sum of resistance (R) and net reactance ($\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$)
- Impedance usually represented in polar form, with a magnitude and an angle ($Z \angle \theta$)
- Impedance is the total opposition to the flow of charge in an AC circuit
- A right triangle, called the impedance triangle is used to illustrate the relationship between AC resistance, reactance, and impedance

Total Impedance

- Impedance (Z) is measured in ohms and defined as:

$$
Z=\sqrt{R^{2}+X_{T}^{2}}
$$

Where:

$$
\begin{aligned}
& X_{T}=X_{L}-X_{C} \\
& R=\text { Resistance } \\
& X_{T}=\text { Total Reactance } \\
& X_{L}=\text { Inductive Reactance } \\
& X_{C}=\text { Capacitive Reactance }
\end{aligned}
$$

- X_{L} and X_{C} are 180° out of phase

Total Impedance

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

$$
\begin{aligned}
& Z=\frac{R}{\cos \theta} \\
& Z=\frac{X_{T}}{\sin \theta}
\end{aligned}
$$

Total Impedance

Total Impedance

Values will depend on a line's length, cross-sectional area, and conductor spacing

Phase Angles

Phase Angle

- Phase angle is defined as the angular separation between two phasors
- The spacing between the zero crossings of two waveforms also illustrates the phase angle (θ) of the circuit

Phase Angle

- The phase angle of a circuit is directly related to the impedance of the circuit
- For a purely resistive circuit, voltage and current will be in phase, and the phase angle will be zero

Phase Angle

- A circuit has a leading phase angle when the current wave leads the voltage wave
- This occurs when the circuit is predominantly capacitive because of the energy storage of the electric field

$$
\begin{aligned}
\mathrm{e} & =- \\
\mathrm{i} & =----
\end{aligned}
$$

Time \longrightarrow

Phase Angle

- A circuit has a lagging phase angle when the current wave lags behind the voltage wave
- This occurs when the circuit is predominantly inductive because of the energy storage of the magnetic field

$$
\begin{aligned}
\mathrm{e} & =- \\
\mathrm{i} & =-----
\end{aligned}
$$

Time

Questions?

PJM Client Management \& Services
 Telephone: (610) 666-8980
 Toll Free Telephone: (866) 400-8980
 Website: www.pim.com
 Member?
 \because Community

The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with

Client Management \& Services

